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In this work, two reliable aqueous solubility models, ASMS (aqueous solubility based on molecular surface)
and ASMS-LOGP (aqueous solubility based on molecular surface using ClogP as a descriptor), were
constructed by using atom type classified solvent accessible surface areas and several molecular descriptors
for a diverse data set of 1708 molecules. For ASMS (without using ClogP as a descriptor), the leave-one-
out q2 and root-mean-square error (RMSE) were 0.872 and 0.748 log unit, respectively. ASMS-LOGP was
slightly better than ASMS (q2 ) 0.886, RMSE) 0.705). Both models were extensively validated by three
cross-validation tests and encouraging predictability was achieved. High throughput aqueous solubility
prediction was conducted for a number of data sets extracted from several widely used databases. We found
that real drugs are about 20-fold more soluble than the so-called druglike molecules in the ZINC database,
which have no violation of Lipinski’s “Rule of 5” at all. Specifically, oral drugs are about 16-fold more
soluble, while injection drugs are 50-60-fold more soluble. If the criterion of a molecule to be soluble is
set to-5 log unit, about 85% of real drugs are predicted as soluble; in contrast only 50% of druglike
molecules in ZINC are soluble. We concluded that the two models could be served as a rule in druglike
analysis and an efficient filter in prioritizing compound libraries prior to high throughput screenings (HTS).

INTRODUCTION

According to the Tufts Center for the Study of Drug
Development (CSDD), the cost of bringing a drug to market
has risen from an average of $231 million in 1991 to roughly
$900 million in 2003.1 Usually, the later the development
phase, the more costly a drug candidate is. For example, in
a study conducted by the Tufts CSDD, the out-of-pocket cost
in the clinical period phase for 27 approved drugs are 15.2,
41.7, and 115.2 million for phase I, phase II, and phase III,
respectively. For the traditional drug discovery philosophy,
one first identifies an active inhibitor as a lead and then
optimizes its selectivity and other physicochemical, physi-
ological, and pharmacokinetic properties (such as absorption,
distribution, metabolism, excretion, and toxicity, in short
ADMET) sequentially. It is gradually realized that this serial
protocol is inferior to a parallel protocol for which the drug
lead’s activity and selectivity as well as ADMET/pharma-
cokinetic properties are optimized simultaneously, simply
because the parallel protocol can effectively eliminate bad
drug candidates from the earlier stages and then substantially
reduce the development costs. What makes a compound a
good drug candidate? A good drug candidate should be
potent against the drug target to induce some biological
response, highly selective, has good ADMET/pharmacoki-
netic properties, and so on. Druglike analysis is useful to

discriminate good drug candidates from the screening
compounds. The most famous druglike filter is the “Rule of
5” suggested by Lipinski,2 which states that a good drug
candidate should have molecular weight smaller than 500,
the calculated logP (ClogP) smaller than 5.0, and the numbers
of hydrogen bond donors and acceptors less than 5 and 10,
respectively. Although most drugs obey the four rules of the
filter, “Rule of 5” is only the minimum criterion of a
molecule to be druglike. It is very easy for a compound to
fall within the “Rule of five” but have no potential to become
a drug. As a matter of fact, there are about 2 million vendor
compounds in the ZINC database having no violation of
“Rule of 5” at all.3 Evidently, not all of the 2 million
compounds have the potential to become drugs. Thus, more
stringent criteria should be built up to efficiently enrich
druglike compounds from the others. Reliable in silico
models that predict ADMET/pharmacokinetic properties
(aqueous solubility, membrane permeability, intestinal ab-
sorption, metabolism, toxicity, oral bioavailability, plasma
protein binding, urinary excretion, area under the plasma
concentration-time curve (AUC), total body clearance (Cl),
volume of distribution, elimination half time (t1/2), etc.) can
be applied for this purpose.

Adequate aqueous solubility is important for a drug to be
administrated orally or by injection. Aqueous solubility and
membrane permeability are the two key factors that affect a
drug’s oral bioavailability. Generally, a drug with high
solubility and membrane permeability is considered exempt
from bioavailability problems. Otherwise, it is a problematic
candidate or needs careful formulation work.

* Corresponding author e-mails: jwang@encysive.com and
xiaojxu@pku.edu.cn.

† Encysive Pharmaceuticals Inc.
‡ University of California at San Diego.
§ Peking University.

10.1021/ci700096r CCC: $37.00 © xxxx American Chemical Society
PAGE EST: 9.6Published on Web 06/15/2007



In concept, aqueous solubilitySof a nonelectrolyte is the
concentration (mol/L) of its saturated aqueous solution.
Usually, the logarithm of solubility, logS, is used for
convenience. Aqueous solubility is almost exclusively de-
pendent on the intermolecular adhesive interactions between
solute-solute, solute-water, and water-water. The solubility
of a compound is thus affected by many factors that include
the size and shape of the molecule, the polarity and
hydrophobicity of the molecule, and the ability of some
groups to participate in intra- and intermolecular hydrogen
bonding as well as the state of the molecule (for example,
additional lattice energy is paid for a compound in the
crystalline state to dissolve), etc. One may take those factors
into consideration to select proper descriptors to build up
models and predict this property.

In the following, we will give a brief review of solubility
predication. A more detailed summary on solubility predic-
tion was presented by Lipinski et al.2 and Jorgensen et al.4

Those methods can be categorized into two types: those that
correlate with experimentally determined properties and those
that do not. The performance of a QSPR model is described
by a set of parameters:n - number of data points,m -
number of descriptors, AUE- average unsigned error in
log unit, RMSE- root-mean-square error in log unit,r2 -
square of correlation coefficient, andq2 - square of
correlation coefficient for the test set.

The first type of models was exemplified by Jain and
Yalkowsky’s recent work in which logSwas correlated with
an experimentally determined melting point (MP) and the
logarithm of octanol/water partition coefficient (logP): n )
580 and AUE) 0.45.5 The first type of models has little
use in high throughput prediction of aqueous solubility since
experimental melting points are typically not available. Quite
a few second types of models are calculated by eq 1 in
accordance with the additive characteristics of aqueous
solubility, where ci is the number of occurrence of a
molecular fragmenti or an atom typei, andwi is its weight,
which is determined by regression analysis, andc0 is a
constant. Certainly, other descriptors, such as molecular
weight, molecular polarizability, and calculated logP, can
be incorporated into eq 1.

Klopman and Zhu reported a set of models with the counts
of fragments as descriptors and the best model utilized 171
fragments: n ) 1168,m ) 171, r2 ) 0.95, AUE) 0.49.6

In a more recent report by Hou et al. the counts of atom
types in addition to two correction factors (hydrophobic
carbon and square of molecular weight) were used to build
up a model for 1290 organic molecules that covered a large
variety of chemical classes (n ) 1290,m ) 78, r2 ) 0.92,
AUE ) 0.48, RMSE) 0.61 andntest) 120, AUEtest) 0.57,
RMSEtest ) 0.79).7 The fragment/atom type contribution
method does not need any descriptors based on other
theoretical models, and they only need to count the occur-
rence of functional groups or atom types in a molecule, so
they are extremely time-saving. One potential disadvantage
of this kind of method is that new fragments or atom types
not defined in the training sets may cause substantial errors.

Besides the counts of fragments or atom types, a lot of
theoretical descriptors have been successfully applied in
predicting aqueous solubility. Mitchell and Jurs utilized
topological, geometric, and electronic descriptors to predict
aqueous solubility for a set of diverse molecules (n ) 295,
m ) 9, r2 ) 0.93, RMSE) 0.64).8 Huuskonen developed a
set of solubility models for a data set of 1297 diverse
compounds that were described by 24 atom-type E-state
indices and 6 topological indices (n ) 884, m ) 30, r2 )
0.89, RMSE) 0.67 andntest ) 413,q2 ) 0.88, RMSEtest )
0.71).9 The Huuskonen data set was also studied by Tetko
et al. with purely 38 atom-type E-state indices as descriptors.
The best model was generated by an artificial neural network
(ANN): m ) 33, r2 ) 0.91, and RMSE) 0.62.10 Again the
same data set was used by Liu and So to develop a simple
ANN model using 19 descriptors (hydrophobicity, hydro-
philicity, molecular weight, and 2D-topolgical indices):n
) 1033,m ) 19, r2 ) 0.86, RMSE) 0.70 andq2 ) 0.85,
RMSE ) 0.72 for leave-one-out cross-validation.11 In a
recent report, Yan and Gasteiger developed two QSPR
models for the Huuskonen data set by a multilinear regression
and an ANN.12 The descriptors comprised a set of 32 values
of a radial distribution function (RDF) code representing the
3D compounds and 8 additional correction factors that
characterize molecular polarizability, relative aromatic and
aliphatic degree, and the ability of atoms to participate in
hydrogen bonding. A good predictive power was achieved:
n ) 797,r2 ) 0.79, AUE) 0.70, RMSE) 0.93 andntest )
496, q2 ) 0.82, AUEtest ) 0.68, RMSEtest ) 0.79 for the
regression model. Recently, Delaney studied a much larger
data set of 2874 compounds by using 9 simple descriptors
that included calculated logP, molecular weight, aromatic
proportion, non-carbon proportion, polar surface area, etc.13

The performance of the model was listed as follows:n )
2874,m ) 9, R2 ) 0.69, UAE) 0.75, RMSE ) 1.01. In
another report, Votano and Parham constructed a set of
models with topological structure indices as descriptors using
a variety of data analysis methods.14 For the data set of 4115
aromatic compounds, the RMSE of the 772 test set molecules
were 0.91, 1.01, and 1.04, for models developed with an
ANN, partial least-square, and multiple linear regression
analysis, respectively. Regarding the 1874 nonaromatic
compounds, the RMSE of the 166 test set molecules were
0.75, 0.87, and 0.88, for the three aforementioned analysis
methods, respectively. The disadvantage of this kind of
methods is that they are dependent on the descriptors
calculated from other theoretical models, and this kind of
dependence produces additional difficulties to estimate the
solubility of a molecule automatically.

In summary, most aqueous solubility models have a RMSE
between 0.7 and 1.0 log units, and good performance is
relatively easy to achieve for a smaller data set; QSPR
models calculated with eq 1 usually require more descriptors;
and most solubility models are constructed with linear
regression and artificial neutral network. An ANN usually
outperforms linear regression in generating QSPR models,
but the difference is much smaller in terms ofq2, AUE, and
RMSE for the external test sets. In addition, ANN models
may not be interpretable and have a higher chance to be
overfitted than regression models.

In this work, we introduced a new type of descriptor,
solvent accessible surface area (SASA) classified by atom

logS) ∑
i)1

N

wici + c0 (1)
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types, to construct aqueous solubility models for a relatively
large data set that consisted 1708 diverse molecules. In eq
1, ci is now the SASA of atom typei, rather than the count
of fragment i or atom typei. We believe that SASA is
superior to the number of occurrences of a fragment or an
atom type to correlate with aqueous solubility, simply
because the solubility of a molecule depends on the relative
interactions between solute-solute, solute-water, and water-
water, and more exposed atoms have bigger contributions
than inside atoms. In contrast, the application of counts of
fragments or atom types as descriptors totally neglects the
difference of exposed and inside atoms.

The aqueous models constructed in this work should have
great applications in drug design: they can be used to predict
a molecule’s aqueous solubility prior to its synthesis; they
can be also applied as a rule to define druglikeness; and they
can serve as a filter to prioritize a database for high
throughput screenings.

METHODS

1. Experimental Data Source.There were two major
sources of experimental solubility data applied in this study,
namely, the low molecular weight subset (1144) of the
Delaney data set and the Huuskonen data set, which consisted
of 1297 diverse compounds taken from the AQUSOL
database of the University of Arizona and the PHYSPROP
database. In addition, 28 novel compounds in Hou’s data
set and 9 more compounds through personal correspondence
were included. The canonical SLNs (Sybyl Line Notation)
of all 2478 molecules were generated and compared to each
other. After removing duplicated entries, 1708 molecules
were left. The experimental data of the Huuskonen set had
higher priority to be adopted when duplication occurred. The
compound names and experimental aqueous solubility values
as well as SMILES are listed in Table S1 of the Supporting

Information. The distribution of 1708 aqueous solubility data
in a 2D-chemical space defined by molecular weight (MW)
and ClogP is shown in Figure 1. The dots are colored by
the experimental logS. It is shown that the 1708 molecules
are almost evenly distributed in a chemical space defined
by druglike molecules (MW from 50 to 550 and ClogP from
-4 to 8).

2. Descriptors. 2.1. Atom Type Classified SASA. In the
first place, for each molecule, a 3D-structure was generated
by Concord module in Sybyl7.0.15 Then its solvent accessible
surface area was computed with a program developed by
ourselves. The element-based radius parameters (in Å) are
listed as follows: H- 1.2, C- 1.74, N- 1.54, O- 1.40,
S - 2.0, P- 2.0, F- 1.60, Cl- 1.79, Br- 2.04, I- 2.15.
Similar to our previous work in developing a solvation free
energy model based on SASA, a probe radius of 0.6 Å, rather
than the water probe (1.4 Å), was applied to penetrate the
molecular surface deeper to explore more details.16 An atom
type assignment was conducted with the Antechamber
module in the Amber package.17 At the beginning, each
element had only one atom type, and additional atom types
were introduced only if they were able to significantly
improve the fitting. Besides SASA, a set of molecular
properties that frequently appears in QSPR modeling was
tested whether it could improve the model performance. It
is notable thatci in eq 1 are not only the SASA of atom
type i but also the molecular propertiesi that enters the
regressions.

2.2. Molecular Polarizability - Pol. Static molecular
polarizability expresses how a molecule responds to an
external electric field. Molecular polarizability is a measure
of inductive and coefficient dispersion interactions within a
molecule or a molecular system. The correlation square
between polarizability and aqueous solubility was found to
be 0.44. Molecular polarizability was calculated with an

Figure 1. Distribution of 1708 aqueous solubility data in a 2D-chemical space defined by molecular weight and ClogP. The dots are
colored by experimental solubility- logS.
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empirical additive formula:R ) -1.529+ 10.152#Csp1 +
8.765#Csp2+ 5.702#Csp1+ 3.391#H+ 3.833#F+ 16.557#Cl
+ 24.123#Br+ 38.506#I+ 10.488#Nnitro + 6.335#Nothes+
4.307#O + 15.726#Ssulfone + 22.366#Sothers + 11.173#P,
where #Csp1 denotes the numbers of sp1 carbon atoms in the
molecules, etc. This polarizability model was developed for
a data set of 420 molecules (n ) 420,m ) 14, r2 ) 0.998,
RMSE ) 1.490 and leave-one-outq2 ) 0.998, RMSE)
1.566).18

2.3. Calculated Logarithm of Water-Octanol Partition
Coefficient - ClogP. logP is an index of molecular polarity,
and it is highly correlated with aqueous solubility. The logP
data in this study were estimated with the ClogP module
implemented in Sybyl7.0.15 The correlation coefficient square
between ClogP and aqueous solubility was found to be 0.69.
However the use of ClogP as a descriptor ruins our effort of

developing a totally independent software package of
predicting drugs ADMET properties. Therefore, two models,
one using and the other not using ClogP, were constructed.

2.4. Molecular Weight - MW. Molecular weight is
correlated with the size of the molecule. The correlation
coefficient squares between aqueous solubility and molecular
weight and square of molecular weight (MW2) were 0.39
and 0.29, respectively. In combination with SASA, we found
that MW2, rather than MW, gave a better fitting. Hou et al.
also found that MW2 was a better descriptor when combined
with their atom type count descriptors.7

2.5. Intramolecular Hydrogen Bonding - HB. Hydro-
gen bond formation within solute itself or between solute
and water can affect its solubility. We believe that the ability
of a molecule to participate in hydrogen bonding with water
may be well represented by some SASA descriptors.

Table 1. Coefficients of Each Descriptor of Two Aqueous Solubility Models Based on Solvent Accessible Surface Areas and Several
Molecular Properties

descriptor description ASMS ASMS-LOGP

CONSTANT constant 0.973488 0.731810
CLOGP calculated logP -0.418476
POL polarizability -0.029167 -0.025182
MW2 square of molecular weight 0.000014 0.000009
HB number of intramolecular hydrogen bonds -0.168311 -0.146716
HYDRO-PHOB_C3 number of sp3 carbon in hydrophobic cores -0.298797 -0.227676
HYDRO-PHOB_C2 number of sp2 carbon in hydrophobic cores -0.078249 -0.076251
ho H-O -0.015301 -0.013147
hn H-N 0.020421 0.009108
h4 H on sp2 carbon with one electron-withdrawal group 0.029957 0.018237
h5 H on sp2 carbon with two electron-withdrawal group 0.020605 0.004941
ha H on sp1 and other sp2 carbons 0.007661 0.006955
h1 H on aliphatic sp3 carbon with one electron-withdrawal group 0.002733 0.002641
h23 H on aliphatic sp3 carbon with two or three electron-withdrawal group 0.016835 0.010372
hc all other H -0.007467 -0.000465
c1 sp1 C -0.015212 -0.011148
c CdO, CdS, or CdN -0.009333 -0.009773
ca3 aromatic C with three other aromatic atoms, such as central atom of 1H-phenalene-0.078561 -0.060715
ca2 aromatic C without hydrogen -0.030905 -0.013338
ca aromatic C attached to one hydrogen -0.009187 0.001597
c2 all other sp2 carbon -0.012682 -0.003022
c3a sp3 carbon connected to a 11 or longer sp3 carbon-chain 0.086805 0.079860
c3 all other sp3 carbon 0.031380 0.028129
n1 nitrogens in cyano, NdNdR or N[XXX]N -R 0.008449 0.002777
nb aromatic nitrogen, two substituents 0.011172 -0.000774
n2 other two-substitutent sp2 nitrogen 0.004006 -0.007129
n N in amide group -0.043182 -0.022602
na sp2 N in planar ring with three substituents -0.080639 -0.045499
nh other sp2 N with three substituents -0.019853 -0.013968
no N in nitro group 0.115853 0.097132
n3_2 N in amine group with two hydrogens -0.019914 -0.036936
n3_1 N in amine group with one hydrogen 0.063802 0.051510
n3 all other nitrogen 0.177633 0.149629
o21 O in aldehydates 0.007037 0.007653
o22 O in ketones 0.016423 0.002194
o23 sp2 O in carboxyl group, OdC-SH, COO-, or COS- 0.016058 -0.000931
o24 sp2 O in amide group 0.010781 0.001608
o26 sp2 O in ester 0.006691 -0.000406
o2n O in nitro group -0.017969 -0.014710
o2s OdS -0.003398 -0.006002
o2p OdP 0.077398 0.045194
oh′ hydroxyl O in HO-CdO, HO-CdS, HO-CdNR, or HO-CdPR 0.040671 0.040837
oh all other hydroxyl O 0.059812 0.040755
os′ sp3 O in RO-CdO, RO-CdS, RO-CdNR, or RO-CdPR 0.003099 0.011531
osp sp3 O in RO-SdO, RO-SdS, RO-PdO, or RO-PdS -0.030296 0.016977
os all other sp3 O -0.018591 -0.017665
sh sp3 sulfur in thiol groups -0.018385 -0.013581
ss sp3 sulfur in -SR or SsS -0.009582 0.000273
s sp2 sulfur in SdP, SdC, etc. -0.011547 -0.012442
s4 hypervalent sulfur, four substituents 0.056366 0.040530
p any P 0.017886 -0.076058
f any F -0.012698 -0.005571
cl any Cl -0.012931 -0.004618
br any Br -0.015655 -0.006918
i any I -0.015565 -0.004802
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However, the ability of a molecule to form intramolecule
hydrogen-bonding needs to be quantified. In this work,
hydrogen donor D is either N or O with an attached hydrogen
H, and hydrogen acceptor A is either N or O in functional
groups except nitro and cyano. An intramolecule hydrogen
bond was considered to be formed when the distance of AD
was smaller than 2.5 Å and the angle of AHD was larger
than 100°. A simple conformational search was performed
when the above criteria were not met, as long as AD was
smaller than 4.5 Å and D was not in a ring. A bond formed
with D except H was rotated six times at a step of 60°, and
a hydrogen bond was considered to be formed if at least
one conformation met the criteria. HB is the total number
of all possible hydrogen bonds. The correlation coefficient
square was calculated as 0.013 between HB and experimental
aqueous solubility.

2.6. Hydrophobicity - HB_C2 and HB_C3.Hydropho-
bicity is another factor that makes substantial contribution
to aqueous solubility. Although it is partially accounted by
ClogP and some of the SASA descriptors, adding hydro-
phobicity terms explicitly can improve the QSPR models.
In this work, a hydrophobic cluster was a collection of sp2
and sp3 carbons, and from any atom in the cluster there was
no other kind of heavy atoms within any atomic path that
had less than or equal to seven atoms. HB_C2 and HB_C3
are the numbers of sp2 carbon and sp3 carbons in hydrophobic
clusters of a molecule, respectively. Ther2 of aqueous
solubility to HB_C2 and HB_C3 are 0.10 and 0.06, respec-
tively.

3. Model Validation. The two aqueous solubility models
were extensively validated by three types of tests. First of
all, a leave-one-out analysis was carried out for both models.

Second, the whole molecular set was classified into 240
groups by a cluster analysis based on 2D-similarity.15 One
molecule from each group was randomly picked up to
compose a test set (15% of the whole data set). The other
molecules entered the training set. Two corresponding QSPR
models, which were constructed by using the 1468 molecules
in the training set, were used to make predictions for the
other 240 molecules in the test set. Third, a 90/10 (10%
randomly selected data in the test set and 90% data in the
training set) cross-validation was run for 10,000 times. For
each run, the aqueous solubility of the test set molecules
was predicted with the models based on the training set.

Figure 2. Plots of calculated versus experimental logS of 1708
molecules using ASMS and ASMS-LOGP with the corresponding
regression equations: (a) model ASMS and (b) model ASMS-
LOGP.

Figure 3. Distribution of 1708 aqueous solubility data in a 2D-
chemical space defined by molecular weight and ClogP. The dots
are colored by residues of prediction with (a) model ASMS and
(b) model ASMS-LOGP.

Table 2. Performance of 10,000 Times 90/10 Cross-Validation for
Both Models

minimum maximum mean RMSD

ASMS
AUE 0.41 0.68 0.527 0.034
RMSE 0.54 0.97 0.699 0.054
q2 0.77 0.94 0.884 0.021

ASMS-LOGP
AUE 0.46 0.70 0.570 0.034
RMSE 0.58 1.00 0.742 0.053
q2 0.75 0.93 0.869 0.022
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4. Aqueous Solubility Prediction for a Number of
Conformation Sets.To investigate how sensitive the aque-
ous solubility models to different conformers, 100 molecules
that have a number of rotatable bonds ranging from 0 to 10
were randomly selected and submitted for conformational
searches with the Omega program (Openeye Inc.).19 Then
aqueous solubility prediction was conducted with both
models.

5. Application of Aqueous Models in Druglike Analysis.
Both ASMS and ASMS-LOGP were applied to predict
aqueous solubility for molecules in seven prestigious data-
bases: (1) ZINC druglike subset3 - 104,712 molecules,∼5%
of the whole data set; (2) Available Chemical Directory
(ACD)20 - 61,258 molecules,∼30% of the whole database;
(3) Comprehensive Medicinal Chemistry (CMC)20 - 4134
molecules,∼50% of the whole database; (4) World Drug
Index (WDI)21 - 25,783,∼40% of the whole database; (5)
Drug- 1536 molecules; (6) Injection Drug- 314 molecules;
and (7) Oral Drug- 643 molecules. For (1)-(4), certain
percentages of molecules in the whole databases were
selected randomly to form the data sets for studies. Molecules
in (5)-(7) are actual drugs approved by the U.S. Food and
Drug Administration since 1970.

RESULTS AND DISCUSSION

1. Two Aqueous Solubility Models Based on SAS.In
total, we have collected 1708 diverse molecules to develop
aqueous solubility models. This data set is significantly larger
than most data sets used by other researchers. Two aqueous
solubility models, either without (ASMS) or with (ASMS-
LOGP) ClogP as a descriptor, have been developed using
eq 1. The application of SASA as descriptors enables us to
use only a very limited number of atom types to achieve
good fitting performance. The definition of 50 atom types
defined in this work is listed in Table 1. In comparison,
Klopman and Zhu6 applied 171 fragments and Hou et al.7

utilized 76 atom types to study much smaller data sets (1168
and 1290, respectively). Since most atom types in this work
were defined according to atomic number, hybridization, or
a very localized chemical environment (mostly in a single
functional group), it is unlikely that our models suffer from
the problem of missing atom types and make biased
prediction for novel molecules.

The performance of the two models is very encouraging.
For ASMS, leave-one-outq2 ) 0.872 and RMSE) 0.748
log unit using the first 18 components suggested by a partial
least-square (PLS) analysis. For full component analysis,r2

) 0.884, AUE) 0.547, RMSE) 0.707,F ) 812.5. ASMS-
LOGP is slightly better than ASMS:q2 ) 0.886 and RMSE

Figure 4. Distributions of AUD (a), RMSE (b), andq2 (c) of
10,000 times 90/10 cross-validations by clustered column charts
for model ASMS.

Figure 5. Distributions of AUD (a), RMSE (b), andq2 (c) of
10,000 times 90/10 cross-validations by clustered column charts
for model ASMS-LOGP.
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) 0.705 (leave-one-out cross-validation using the first 18
components according to PLS analysis),r2 ) 0.897, RMSE
) 0.664, AUE) 0.505,F ) 706.0 (full component analysis).

The plots of experimental versus predicted aqueous
solubility are shown in Figure 2. The distribution of the
prediction errors in a two-dimensional space defined by
molecular weight and ClogP is shown in Figure 3. It is clear
that prediction errors are evenly distributed in the space for
both models.

The performance of ASMS-LOGP is only slightly better
than that of ASMS, indicating logP is implicitly taken into
account in the ASMS model. The advantage of ASMS over

ASMS-LOGP is that the ASMS model is not affected by
the potential error introduced by the logP calculations. More
importantly, ASMS can be applied directly to conduct high
throughput aqueous solubility prediction with our ADMET
software package.

Table 3. Statistical Results of Aqueous Solubility Prediction Using
Model ASMS and Model ASMS-LOGP for 55 Molecules That
Have Multiple Conformations

ASMS ASMS-LOGPcomp
ID expt

rotatable
bonds

confrmtn
number MEAN RMSE MEAN RMSE

1 28 -2.52 1 4 -3.37 0.04 -3.36 0.04
2 30 -2.65 4 18 -3.35 0.13 -3.58 0.08
3 33 -2.28 5 9 -1.54 0.24 -2.25 0.03
4 131 -3.01 4 4 -2.22 0.11 -2.4 0.06
5 313 -3.26 3 2 -3.12 0.00 -3.14 0.00
6 361 -5.27 1 2 -4.47 0.00 -4.61 0.00
7 387 -4.16 7 105 -4.14 0.30 -4.05 0.26
8 435 -5.74 8 62 -5.72 0.16 -5.92 0.10
9 447 -4.82 4 14 -5.22 0.13 -4.94 0.13
10 457 -3.66 7 108 -4.35 0.14 -3.94 0.11
11 464 -4.88 2 23 -5.15 0.11 -4.97 0.06
12 465 -4.23 1 3 -4.63 0.05 -4.56 0.02
13 484 -4.19 4 9 -4.94 0.06 -4.92 0.03
14 493 -3.12 4 9 -2.17 0.06 -2.4 0.03
15 502 -1.5 4 10 -1.71 0.13 -1.11 0.09
16 526 -2.68 3 4 -3.03 0.08 -3.36 0.08
17 533 -1.74 1 2 -2.69 0.01 -2.64 0.01
18 622 -1.32 5 168 -4.15 0.26 -3.55 0.19
19 645 -3.68 0 2 -4.05 0.02 -3.83 0.01
20 668 -2.86 1 2 -3.35 0.01 -2.95 0.01
21 714 0.79 1 4 -0.8 0.07 -0.74 0.04
22 759 -5.07 6 64 -3.98 0.13 -4.26 0.10
23 774 -1.5 2 3 -1.33 0.15 -1.48 0.09
24 776 -0.45 2 8 -0.96 0.17 -0.87 0.10
25 788 -0.53 5 12 -0.76 0.09 0.06 0.07
26 856 -5.68 8 3 -5.06 0.01 -5.39 0.00
27 914 -1.37 3 3 0.09 0.11 0.37 0.08
28 916 -2.22 8 41 -1.84 0.15 -2.52 0.13
29 1003 -2.1 10 163 -2.76 0.25 -3.05 0.18
30 1025 -1.76 1 2 -0.92 0.00 -1.37 0.00
31 1033 -0.35 2 3 -1.39 0.07 -1.5 0.05
32 1077 -3.02 6 17 -2.79 0.09 -3.14 0.05
33 1079 -1.51 5 7 0.57 0.20 0.52 0.16
34 1111 -0.85 0 2 0.26 0.06 -0.23 0.04
35 1185 -2.18 1 4 -2.31 0.06 -2.25 0.05
36 1262 -2.35 4 2 -1.47 0.06 -1.83 0.06
37 1304 -1.2 4 7 -1.45 0.06 -1.6 0.07
38 1338 -0.43 4 4 -0.97 0.04 -0.69 0.05
39 1390 -4.07 6 2 -4.07 0.02 -4.52 0.01
40 1463 -0.72 4 6 -0.65 0.03 -0.78 0.02
41 1502 -0.54 7 17 -1.05 0.18 -0.91 0.14
42 1581 -1.88 2 4 -1.76 0.09 -2.09 0.05
43 1598 -3.93 6 400 -3.33 0.11 -3.32 0.06
44 1605 -1.34 2 3 -1.09 0.03 -1.07 0.01
45 1608 -1.62 4 21 -2.13 0.15 -2.43 0.09
46 1616 -2.93 8 213 -3.03 0.14 -3.28 0.09
47 1624 -4.6 1 2 -4.68 0.00 -5.44 0.00
48 1642 -2.3 7 66 -2.55 0.15 -2.55 0.12
49 1653 -3.81 4 4 -2.72 0.08 -3.15 0.03
50 1655 -1.83 2 4 -1.08 0.01 -1.7 0.01
51 1677 -1.23 2 5 -1.74 0.09 -1.22 0.05
52 1689 -4.19 9 113 -4.84 0.17 -4.72 0.14
53 1691 0.54 2 24 0.41 0.20 0.27 0.14
54 1705 -2.42 3 7 -1.91 0.07 -1.93 0.03
55 1707 -4.86 9 67 -5.07 0.12 -5.27 0.12

Figure 6. Distribution of predicted aqueous solubility- logSby
model ASMS for seven data sets: (a) ZINC (in blue) versus drug
data sets, (b) ZINC versus WDI and CMC, and (c) ZINC versus
ACD.

Table 4. Statistical Results of Predicting Aqueous Solubility with
Both Model ASMS and Model ASMS-LOGP for a Set of Databases

model database
no. of

compds min. max. mean RMSD

ASMS ZINC 10412 -8.45 3.28 -4.58 1.22
ACD 61258 -18.35 18.12 -3.68 2.04
CMC 4134 -12.19 6.11 -3.73 1.73
WDI 25783 -16.38 8.90 -3.88 2.01
Drug 1536 -11.91 4.47 -3.38 1.92
Drug-Injection 314 -10.83 4.47 -2.90 2.12
Drug-Oral 643 -10.71 4.47 -3.41 1.79

ASMS-LOGP ZINC 10412 -9.14 4.77 -4.72 1.23
ACD 61258 -17.982 7.10 -3.65 1.99
CMC 4134 -12.00 4.91 -3.66 1.74
WDI 25783 -16.63 4.91 -3.83 2.06
Drug 1536 -11.78 3.11 -3.36 1.93
Drug-Injection 314 -11.63 3.11 -2.93 2.03
Drug-Oral 643 -10.55 2.84 -3.42 1.78
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2. The Predictability and Applicability of Two Models.
Both ASMS and ASMS-LOGP have been extensively
validated in three tests. First of all, the leave-one-outq2 is
very close to r2 of full component regression analysis:
0.872-0.884 for ASMS and 0.886-0.897 for ASMS-LOGP.
Similarly, the RMSE values are also very close. In the second
test, 240 structurally diverse molecules are selected to
compose a test set. The models constructed on the other 1468
molecules are used to predict solubility of the molecules in
the test set. The AUE and RMSE are 0.617 and 0.792 log
units for ASMS, respectively, and 0.558 and 0.724 for
ASMS-LOGP, respectively. In the third, 10,000 times 90/
10 cross-validation are carried out for both models. The
results are listed in Table 2, and the distributions of AUE,
RMSE, andq2 are represented by clustered column charts

in Figures 4 and 5. Interestingly, for both models the mean
RMSE andq2 are very close to those of leave-one-out
analysis: 0.748-0.742 (RMSE) and 0.872-0.869 (q2) for
model ASMS and 0.705-0.699 (RMSE) and 0.886-0.884
(q2) for model ASMS-LOGP. It is concluded that leave-one-
out analysis is a more reliable cross-validation approach than
simply dividing a whole data set into training and test sets
arbitrarily. And both models are reliable in predicting
aqueous solubility of novel compounds.

The applicability of the two models is well characterized
by Figure 1. In this figure, molecular weight, which describes
the size of a molecule, and ClogP, which describes the
polarity of a molecule, define a two-dimensional space. It is
clear that experimental aqueous solubility is well distributed
in the whole space, indicating the molecular set we studied
is adequately diverse and the model can make a suitable
prediction for a variety of molecules. Another reason that
MW and ClogP were chosen to define the chemical space is
because both parameters have high correlation to the
experimental solubility.

Compared to other well-established solubility models
including those implemented in commercial software pack-
ages, our models achieved better or comparable performance,
although we studied a considerable larger data set. The high
predictability is demonstrated by the very small differences
between RMSE and RMSEtest of both models.

3. How Do Conformations Affect the Performance of
the Models? For the 100 molecules randomly selected to
investigate how different conformers affect the solubility
prediction, only 55 have more than one conformer. The
number of rotatable bonds, the number of conformations,
and the mean and root-mean-square error of predicted
solubilities are listed in Table 3. The average AUE and
RMSE to the means are 0.099 and 0.122 log unit, respec-
tively. The largest RMSE among 55 molecules is 0.30 for
compound 387. The very small average AUE and RMSE
indicate that the prediction is not sensitive to conformations.
However, it is recommended to use 2D to 3D conversion
programs, such as Concord as we used,15 to produce
reasonable 3D structures for SASA calculations. It is notable
that no further structural minimization is needed prior to
solubility prediction with both ASMS and ASMS-LOGP.
Furthermore, when a conformational ensemble is used to
predict aqueous solubility, it is very unlikely to produce much
different results for the conformational ensemble in water
from that in vacuum.

4. Application of the Aqueous Models in Drug Design.
A model is useful only when it can be applied to solve
practical problems. Both models were utilized to predict
aqueous solubility for the seven data sets described in the
methodology section. The average, minimum, and maximum
solubility of each data set are listed in Table 4. The
distributions of predicted aqueous solubility are represented
by a set of clustered column charts in Figures 6 and 7. It is
concluded that real drugs are about 20-fold more soluble than
the so-called druglike molecules in the ZINC database. More
specifically, injection drugs are about 50-60-fold more
soluble, while oral drugs are about 16-fold more soluble.
The enrichment plots for both models are shown in Figures
8 and 9. If the cutoff of a molecule to be soluble is-5.0 log
unit, about 85% of true drugs are soluble, whereas only about
50-55% of “druglike” molecules in the ZINC database are

Figure 7. Distribution of predicted aqueous solubility- logSby
model ASMS-LOGP for seven data sets: (a) ZINC (in blue) versus
drug data sets, (b) ZINC versus WDI and CMC, and (c) ZINC
versus ACD.
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soluble. This is a remarkable result, and it might imply the
necessity of further improving the quality of compound
libraries for HTS. Based on Table 1, one might get some
hints on how to modify the molecules to improve aqueous
solubility. For example, the introduction of a hydroxyl group
could improve solubility about 0.4-0.6 log unit if the effect
on other molecular descriptors (polarizability, molecular
weight, number of the intramolecular hydrogen bonds, etc.)
is ignored. That is to say, the contribution of one hydroxyl
functional group is simply estimated by summing up the
products of solvent accessible surface areas of hydrogen and
oxygen multiplying their corresponding coefficients (-0.0153
for H and 0.0598 for O in the ASMS model). In practice,
one should also consider the possible side effects caused by
the modification on other important properties, especially,
bioactivity, selectivity, bioavailability, etc.

In conclusion, our solubility models can serve as a new
rule to evaluate how a molecule is druglike. They can also
serve as a filter to prioritize databases prior to HTS. Unlike
other filters, such as similarity based on fingerprints or
pharmacophore models, the solubility filter is research project
independent and may serve as a general filter as the “Rule
of 5” in drug discovery.

CONCLUSIONS

In this work, we successfully developed two aqueous
solubility models using atom type classified solvent-acces-
sible surface areas for a large diverse molecular data set.
For model ASMS,r2 ) 0.884, RMSE) 0.707, leave-one-
out q2 ) 0.872, and RMSE) 0.748. ASMS-LOGP, which
included ClogP as a descriptor, achieved better perfor-
mance: r2 ) 0.897, RMSE) 0.664, leave-one-outq2 )

Figure 8. Enrichment plots of screening a number of data sets using model ASMS. Take the predicted logS of -5 as a threshold, about
15% of the molecules in the Drugs data set were screened out, while about 50% of the molecules in the ZINC druglike data set were
removed.

Figure 9. Enrichment plots of screening a number of data sets using model ASMS-LOGP. Take the predicted logSof -5 as a threshold,
about 13% of the molecules in the Drugs data set were screened out, while about 45% of the molecules in the ZINC druglike data set were
removed.
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0.886, and RMSE) 0.705. Both models were thoroughly
evaluated by three cross-validation tests and showed good
predictability. Both models were applied to HTS prediction
of aqueous solubility for a variety of data sets extracted from
a set of widely used databases in pharmaceutical companies.
It is found that the real drugs are about 20 times more soluble
than those “druglike” molecules in the ZINC database. With
a cutoff of -5 applied in logS prediction with both ASMS
and ASMS-LOGP models, 50% of “druglike” molecules in
ZINC were eliminated, while only less than 15% of real
drugs were screened out. We believe our reliable aqueous
solubility models will have a great use in drug discovery.

Abbreviations. QSPR, quantitative structure-property
relationship; SASA, solvent accessible surface area; AD-
MET, absorption, distribution, metabolism, excretion, and
toxicity; HTS, high throughput screening; CLogP, calculated
logP; AUE, average unsigned error; RMSE, root-mean-
square error;r2, square of correlation coefficient for the
training set;q2, square of correlation coefficient for the test
set; PLS, partial least-square.
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