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A critically evaluated database of human intestinal absorption for 648 chemical compounds is reported in
this study, among which 579 are believed to be transported by passive diffusion. The correlation analysis
between the intestinal absorption and several important molecular properties demonstrated that no single
molecular property could be used as a good discriminator to efficiently distinguish the poorly absorbed
compounds from those that are well absorbed. The theoretical correlation models for a training set of 455
compounds were proposed by using the genetic function approximation technique. The best prediction model
contains four molecular descriptors: topological polar surface area, the predicted distribution coefficient at
pH ) 6.5, the number of violations of the Lipinski’s rule-of-five, and the square of the number of hydrogen-
bond donors. The model was able to predict the fractional absorption with anr ) 0.84 and a prediction
error (absolute mean error) of 11.2% for the training set. Moreover, it achieves anr ) 0.90 and a prediction
error of 7.8% for a 98-compound test set. The recursive partitioning technique was applied to find the
simple hierarchical rules to classify the compounds into poor (%FAe 30%) and good (%FA> 30%)
intestinal absorption classes. The high quality of the classification model was validated by the satisfactory
predictions on the training set (correctly identifying 95.9% of the compounds in the poor-absorption class
and 96.1% of the compounds in the good-absorption class) and on the test set (correctly identifying 100%
of the compounds in the poor-absorption class and 96.8% of the compounds in the good-absorption class).
We expect that, in the future, the rules for the prediction of carrier-mediated transporting and first pass
metabolism can be integrated into the current hierarchical rules, and the classification model may become
more powerful in the prediction of intestinal absorption or even human bioavailability. The databases of
human intestinal absorption reported here are available for download from the supporting Web site: http://
modem.ucsd.edu/adme.

INTRODUCTION

Because of the fact that the failure of many compounds
in the development stage is caused by unfavorable absorption,
distribution, metabolism, and excretion (ADME) properties,
more and more efforts are put to the field of ADME
predictions.1,2 As an alternative to experimental measure-
ments, the in silico prediction of ADME properties is very
attractive, because it provides an inexpensive and high-
throughput way to assess the ADME properties of a molecule
prior to synthesis and biological testing. Among ADME
properties, good oral bioavailability is one of the most
desirable attributes of a new drug. The prediction of oral
bioavailability is very challenging due to the fact that
bioavailability is a complex function of many biologic and
physicochemical factors, such as dissolution in the gas-
trointestinal tract, intestinal membrane permeation, intestinal
and hepatic first-pass metabolism, and even the dosage form.
On the current stage, major efforts are focused on the
prediction of human intestinal absorption (HIA), because the
first step for obtaining a high oral bioavailability is to achieve
a good oral absorption.

In experiments, intestinal absorption is usually measured
by fraction absorption, %FA, which is defined by the total
mass absorbed divided by the given dose of the drug. The
field on the prediction of oral absorption might have been
pioneered by the rule of five proposed by Lipinski and co-
workers.3 The rule of five defined several rules for identifying
compounds with possible poor absorption and permeability:
(1) molecular weight> 500, (2) calculated logP > 5
(CLOGP) or> 4.15 (MLOGP), (3) number of hydrogen-
bond donors (OH and NH groups)> 5, and (4) number of
hydrogen-bond acceptors (N and O atoms)> 10. A
disadvantage of the rule of five is that it can only give a
quite rough classification of molecules, allowing the elimina-
tion of only a very limited set of molecules. Since then,
numerous classification and regression prediction models for
the predictions of HIA were reported by applying a variety
of statistical and machine-leaning approaches, which include
multiple linear regression,4 nonlinear regression,5 partial least
squares regression,6 linear discriminant analysis,7 classifica-
tion and regression trees,8 artificial neural networks (ANNs),9

genetic algorithms (GAs),9 support vector machines (SVMs),10

and so forth. Because of the fact that many factors are related
to intestinal absorption, many physicochemical descriptors
were introduced into the prediction of HIA, such as polar
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surface area (PSA), partition coefficients, molecular size,
hydrogen-bonding descriptors, topological descriptors, and
even quantum chemical descriptors. The detailed descriptions
of the prediction models were reviewed in some recent
articles.11-13 Please note that all reported models could only
deal with molecules transported by passive diffusion. Passive
diffusion is the major route for drug molecules permeating
through cell membranes in the intestine; however, other
diffusion mechanisms may play an important role under some
circumstances. For example, amino acids and glucoses are
usually actively transported by specific transporters, including
peptide transporters, organic cation transporters, and ABC
transporters.14 Adversely, some efflux proteins, especially
P-gp, localized in the apical or basolateral cell membranes
have the potential to pump drugs out from the cell into the
apical or basolateral extracellular fluids.

Besides molecular descriptors and statistical methods,
another important element for developing a reliable predic-
tion model is the high-quality data set. Many of the previous
models were generated on the basis of a small number of
compounds (20-40), with the exceptions of Wessel et al.,15

Deretey et al.,16 Zhao et al.,4 and Klopman et al.17 For
example, Zhao et al. used a data set of 169 drugs with reliable
HIA data, and Klopman et al. utilized an even larger data
set of 417 drugs to construct models. Unfortunately, not all
of the data sets were released for the public scientific
community, and the reliability and validity cannot be
guaranteed for models based on the limited data sets. So our
first objective is to construct a large database of human
intestinal absorption by collecting data from the literature.
On the basis of the extended data set, we expect to study
the relationships between %FA with well-used molecular
properties similarly to our previous work on Caco-2 perme-
ability18 and then construct reliable prediction models for
HIA that can be used as rapid screening filters for candidate
drugs.

METHODS AND MATERIALS

Human Intestinal Absorption Data. The data set reported
here includes 648 drug and druglike molecules collected from
various literature sources. The compound names and the
corresponding experimental %FA values are included in the
SDF file (the supporting web page: http://modem.ucsd.edu/
adme). The data in this database were mainly based on three
sources. The first important source is previously reported
compilations, such as Palm et al.’s collection,5 Wessel et
al.’s collection,15 Zhao et al.’s collection,4 Deretey et al.’s
collection,16 and so forth. The second important source is
the reported intestinal absorption data found in references,
especially data listed in Therapeutic Drugs.19 The third
important source is based on the bioavailability data (%F).
When %F is high, it can be assumed that the bioavailability
of the drug can reflect absorption because the effect of first-
pass metabolism is minimal and almost all of the absorbed
drug can reach the systemic circulation. Here, %FA was
defined to the same value of %F when %F is higher than
95%. The bioavailability data were obtained from our
previous work.20 For compounds with %FA values reported
as being complete, the value considered was 100%. For
compounds with %FA values reported as being poor, the
value considered was 5%. When the %FA values were given

as a range or when more than one value was reported, an
average value was adopted. In general, the deviation observed
for the experimental %FA could be as larger as 20%;
therefore, the artificial treatment should not have a large
influence on the overall reliability of the database and the
developed models.17

The structures of the compounds were built with the
Cerius2 molecular simulation package21 in their neutral
forms, and they were optimized by a molecular mechanism
with the MMFF force field.22 The molecules were then saved
in the MACCS SDF and SMILES formats for further
analysis. The primary focus of prediction in this work was
the modeling of passive drug absorption. Nonetheless, some
potential drugs might be subject to other transport mecha-
nisms. Three classes of compounds, as listed in Table S1 in
the Supporting Information, were eliminated from the initial
collections. These consist of drugs transported by carrier
proteins, drugs that show dose-limited absorption and dose-
dependent absorption, and drugs that are structurally char-
acterized as non-neural, especially molecules containing an
ammonium group, as they bring ambiguity as to what the
counteranion is and how the given salt formation may affect
absorption. After the eliminating process, the remaining
database only includes 553 molecules. We expect that the
accuracy of modeling passive diffusion can be guaranteed
by using our data set, despite the fact that some of the
remaining molecules may also be identified in the future as
being actively transported. The database of human intestinal
absorption with 648 molecules and that with 553 molecules
transported by passive diffusion can be downloaded from
the supporting Web site: http://modem.ucsd.edu/adme. It is
necessary to emphasize here that the 26 compounds with
positively charged nitrogen listed in outliers are not included
in correlation while included in classification.

It should be noted that even for the same compound the
%FA values reported by different compilations are usually
not consistent. Three possible reasons lead to this kind of
inconsistency. First, people copied the data of others without
verifying the accuracy of the data, and so errors were
propagated. For example, the %FA value of sulfasalazine is
12 in Palm et al.’s set,5 is 65 in Wessel et al.’s set,15 and 59
in Zhao et al.’s set.4 According to the reference, the
percentage of cumulative drug and its metabolites in urine
following oral administration is about 56∼61%.23 So the
%FA of 12 for sulfasalazine is obviously too low, and 65 or
59 seems more reasonable. Second, some compiled %FA
data were based on indirect measurements, such as bioavail-
ability, the excretion in urine and feces following oral
administration, and the ratio of cumulative urinary excretion
of drug-related material following oral and intravenous
administration. The reliability of %FA based on these indirect
measurements may be questionable in some cases. For
example, according to the percentage of cumulative drug and
its metabolites in urine following oral/intravenous adminis-
tration, Zhao et al. defined the %FA of vigabatrin to be about
58.4 But according to its high bioavailability (100%),24 a
%FA of 58 is obviously low. Third, the intestinal absorption
for some compounds varies considerably among different
preparations and dosages mainly because of their poor
aqueous solubility, crystallinity, or purity. For example, in
Wessel et al.’s data set, the %FA of methotrexate is 100,15

while it is 70 in Zhao et al.’s data set.4 Finally, cautions
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should be taken to guarantee that the duplicates are elimi-
nated from the data set. Many compounds may have several
names. For example, phenazone in Palm et al.’s set5 is as
the same as antipyrine in Wessel et al.’s set.15 So here the
canonical SMILES string of each molecule was compared
with those of the other molecules iteratively to eliminate all
duplicates.

Molecular Descriptors. HIA is mostly a physicochemical
process; therefore, physicochemical properties should be used
in the prediction of HIA. In the current study, 45 molecular
descriptors were used, including topological polar surface
area (TPSA), molecular weight (MW), rotatable bond count
(Nrot), H-bond donor count (NHBD), H-bond acceptor count
(NHBA), octanol-water partitioning coefficient (logP), ap-
parent partition coefficient (logD) at pH ) 6.5, intrinsic
solubility (logS), molecular molar volume, molecular molar
refractivity (MR), number of violations of the rule of 5
(Nrule-of-5), radius of gyration, molecular area (S), molecular
volume (V), principal moment of inertia, 10 shadow indices,
six κ indices, 12 Kier and Hall molecular connectivity indices
(ø), Wiener index (W), and Zagreb index (Zagreb).

TPSA was calculated using the parameters originally
proposed by Ertl et al.,25 which was developed to calculate
the polar surface area of a molecule on the basis of its 2D
molecular bonding information. Because the 3D structure is
not needed to calculate TPSA, it allows van der Waals polar
surface area calculations to be implemented in virtual
screening approaches. The parameter, logP, which defines
the hydrophobic feature of a molecule in the uncharged state,
was calculated by adding up the well-characterized logP
contributions of separate atoms, structural fragments, and
intramolecular interactions between different fragments
defined in ACDLABS 9.0.26 The apparent coefficient, log
D, giving a more appropriate description of complex
partitioning equilibrium, was estimated on the basis of the
predicted logP and pKa calculated by ACDLABS 9.0. The
intrinsic solubility logS is the solubility for the neutral form
of compounds. The parameter,Nrule-of-5, is defined as the
number of violations of the four rule-of-five rules proposed
by Lipinski et al.3 The 10 shadow indices that characterize
the shape of the molecules were computed by projecting the
molecular surface on three mutually perpendicular planes,
XY, YZ, and XZ after the molecules were rotated to align
the principal moments of inertia with the X, Y, and Z axes.27

κ indices were used to quantify attributes of a molecular
structure’s shape.28 The Kier and Hall molecular connectivity
indices describe different aspects of atom connectivity within
a moleculesthe amount of branching ring structures, and
flexibility, by using four subgraph types: Path, Cluster, Path/
Cluster, and Chain.29,30 The Wiener index defines that the
sum of the chemical bonds exists between all pairs of heavy
atoms in the molecule.31 The Zagreb index is defined as the
sum of the squares of vertex valencies.32 TPSA,Nrot, NHBD,
NHBA, log P, log D at pH ) 7.4, MR, logS, andNrule-of-5

were calculated using ACDLAB 9.0,26 and the other descrip-
tors were calculated using the Cerius2 molecular simulation
package.21

Prediction Models of Intestinal Absorption. The cor-
relation analysis between %FA and several important mo-
lecular properties was accomplished by using simple linear
fitting. The prediction models of HIA were obtained by using
the genetic function approximation (GFA) technique in

Cerius2 21 developed by Rogers and Hopfinger,33 which
combined two seemingly disparate algorithms together: GA34

and the multivariate adaptive regression splines (MARS)
algorithm.35 The MARS algorithm is a statistical technique
for modeling data, which provides an error measure, called
the lack of fit (LOF) score, that automatically penalizes
models with too many features. Nonlinear modeling can also
be achieved by using splines in MARS. In GFA, GA was
applied to identify the best prediction models by automati-
cally selecting the most optimal combination of molecular
descriptors and functional forms. Compared with other
traditional statistical methods, quantitative structure-activity
relationship (QSAR) or quantitative structure-property
relationship based on GA uses a population of many models
and tests only the final, fully constructed models. The details
of QSAR analysis based on GA can be found in previous
publications.33,36,37In this work, an initial population of 100
equations was generated randomly; then, pairs from the
population of equations are chosen for “crossover” operations
from this set of 100 equations randomly. The number of
crossover operations was set to 10 000. The fitness function
used to assess the equations is the Friedman’s LOF score,
which is described by the following equation:

where LSE is the least-squares error,c is the number of basis
functions in the model,d is the smoothing parameter,p is
the number of descriptors, andm is the number of observa-
tions in the training set. The smoothing parameter that
controls the scoring bias between equations of different sizes
was set to the default value of 1.0, and the new term was
added with a probability of 50%. Here, the linear equation
terms, the quadratic equation terms, and the linear spline
equation terms were used for model building. The quadratic
equation and the linear spline equation terms were applied
to account for the nonlinear effect of some molecular
descriptors. The best equation out of the 100 equations was
taken according to the statistical parameters’ LOF scores.
Moreover, the regression coefficient (r), the regression
coefficient of cross validation (q), the standard error of
estimate (s), and the variance ratio (F) were reported. Cross-
validatedq2 is defined asq2 ) (SSY- PRESS)/SSY, where
SSY is the sum of squared deviations of the dependent
variable values from their mean and PRESS is the sum of
the squared prediction error between the actual and the
predicted values for the independent variables.

Recursive Partitioning (RP).PR38 in Cerius221 was used
to develop a decision tree to classify the compounds into
poor (%FA e 30%) and good (%FA> 30%) intestinal
absorption classes. RP is a technique that builds a classifica-
tion rule to predict the class membership on the basis of
feature information. In general terms, RP is a data-analysis
method for relating a “dependent” variable (Y) to a collection
of independent variables (X) in order to uncover or simply
understand the elusive relationship,Y ) f(X). The result of
RP is a “decision tree” or “graph”, which is constructed
through a recursive partitioning process that divides the study
sample into smaller and smaller samples (every subsample
is called a node) according to whether a particular selected
predictor is above a chosen cutoff value or not. At each step
of RP, all of the molecular descriptors are sequentially

LOF ) LSE/[1 - (c + dp)m]2 (1)
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analyzed to find the best criterion for subdividing compounds
into the “good” or “poor” class. Once the best criterion is
found, the procedure is repeated for each of the obtained
classes of compounds. RP does not try to stop splitting at
the right moment; instead, it is designed to “over split” and
then prune the tree backwards. In this study, moderate
pruning options were set to control the amount of pruning.
The minimum number of samples at each node was set to
four; the maximum tree depth was set to five, and the number
of cross-validation groups was set to 10.

RESULTS AND DISCUSSIONS

1. Relationship between Oral Bioavailability and In-
testinal Absorption. The scatter plot of oral bioavailability
versus intestinal absorption for 470 common compounds is
shown in Figure 1. The %F values for these 470 compounds
were obtained from the human bioavailability database
reported in our previous work.20 It is clear that nearly all
compounds are distributed in the triangle area below the
diagonal. It is not a surprise because the oral bioavailability
is a complex function of both absorption and clearance. For
a drug to be orally bioavailable, it should reach the general
circulation by passing not only through the intestine but also
through the liver where it is subject to first-pass metabolism
(hepatic clearance). In Figure 1, for those compounds far
from the diagonal, they should be metabolized by the liver
significantly. It is interesting to give a rough estimation on
how many compounds are strongly metabolized through the
liver by considering the difference between %F and %FA.
Here, if the difference (%FA- %F) is larger than 20%, the
metabolized effect was considered to be significant. Accord-
ing to this criterion, 171 compounds (36%) were identified
as highly metabolized molecules, while the others were not
highly involved in metabolism in the liver. That is to say,
the bioavailabilities of most compounds (64%) were mainly
controlled by the intestinal absorption process. So the
prediction of intestinal absorption is the first step toward the
prediction of human oral bioavailability.

2. Relationship between Intestinal Absorption and
Caco-2 Permeability.For an accurate and effective predic-
tion of intestinal absorption, several in vitro methods have

been developed. Among them, the most popular human-cell-
based model for intestinal permeability is the Caco-2 cell
system.39 Caco-2 cells, derived from colorectal carcinoma
cells, display many of the morphological and functional
properties of the in vivo intestinal epithelial cell barrier. The
previous studies have shown that oral drug absorption and
the Caco-2 permeability coefficient have a sigmoidal rela-
tionship,40 suggesting that human absorption may be well-
predicted by this in vitro model. While, in several studies,
this kind of sigmoidal relationship was not very clear.41,42

Here, the %FA data and the Caco-2 permeability data (log
Peff) for a large number of compounds (69 compounds) were
collected and compared. The Caco-2 permeability data were
obtained from our previous collection.18 The relationship
between logPeff and %FA does not follow a good sigmoidal
pattern as shown in Figure 2 because the samples with lowest
permeabilities do not form a distinct plateau region. In Figure
2, we could roughly determine an important parameter, the
thresholdPc value, allowing the anticipation of high absorp-
tion in humans, to be-5.25 (≈ 6 × 10-6 cm/s). For all
compounds with a logPeff higher than-5.25, only two
compounds (miberadil and guanoxan) are misclassified. It
should be noted that the reportedPc values are not completely
consistent. For example, Rubas et al. reported thePc value
associated with an apparent permeability of approximately
7 × 10-5 cm/s,43 Grès et al. reported thePc value to be
approximately 2× 10-6 cm/s,41 while Stewart et al. reported
thePc value to be about 2× 10-5 cm/s.44 As shown in Figure
2, the performance of thePc value of 6× 10-6 cm/s is better
than the other reportedPc values. For example, if we used
thePc value proposed by Gre`s et al., besides miberadil and
guanoxan, three other misclassified compounds (enalapril,
nadolol, and erythromycin) were included. On the other hand,
if we used a largerPc value, such as thePc value proposed
by Rubas et al. or Stewart et al., some compounds with high
absorption were omitted. Why are thePc values proposed
by different groups different? There are two reasons. First,
the reported data used in previous analyses are very limited.
For example, in Stewart’s work, the compounds used for
developing the rule were six. In Rubas’s work, the data set
only included seven compounds. Second, the reported Caco-2
permeability values have large interlaboratory differences,

Figure 1. Plot of intestinal absorption vs bioavailability for 470
compounds.

Figure 2. Correlation between Caco-2 permeability and human
intestinal absorption.
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which may lead to the inconsistentPc values proposed by
different works.

In Figure 2, three compounds with %FA values larger than
80% show relatively poor permeability across Caco-2 mono-
layers. For amoxicillin, it is absorbed by carrier-mediated
transport, and the discrepancy can be partially explained
either by the saturation of the carrier or, more likely, by the
fact that Caco-2 cells displayed a variable and generally
lower expression of carrier-mediated transport than that seen
in vivo.41 Although as shown in Figure 2, the intestinal
absorption has a good linear correlation with Caco-2 perme-
ability (r ) 0.82 and SD) 16.2), it should be pointed out
that the good correlation was primarily caused by the high
density of compounds with high intestinal absorption. When
these molecules (44 compounds) in the larger circle in Figure
2 were eliminated from the data set, the correlation between
%FA and logPeff of the other 25 molecules was onlyr )
0.41. For these compounds with low or medium intestinal
absorption, the predictions of oral absorption based on
Caco-2 permeability are not very reliable. For compounds
with high intestinal absorption, permeability of Caco-2
monolayers can be used as a predictive tool to estimate oral
absorption, while for compounds with low or medium
absorption, the permeability of Caco-2 monolayers may not
give a very good rank for estimating oral absorption. So even
if we have experimental Caco-2 permeability data or have
good prediction models for Caco-2 permeabilities, the
development of prediction models of HIA is also demanding.

3. Correlation between Important Molecular Properties
and Intestinal Absorption. The correlation analysis was
conducted between each molecular descriptor and intestinal
absorption. In all molecular descriptors, several of them have
a high correlation with intestinal absorption (|r| g 0.6),
including TPSA (r ) -0.70),NHBD (r ) -0.68), logD6.5 (r
) 0.63),NHBA (r ) -0.63), andNrule-of-5 (r ) -0.61). The
contributions of these descriptors are more important than
those of the other descriptors.

3.a. Topological Polar Surface Area (TPSA).In 1992,
van de Waterbeemd and Kansy first correlated the PSA of a
series of central nervous system drugs to log BB.45 Thence-
forward, PSA has become the most popular parameter for

the prediction of molecular transport properties. Here, the
correlation (r ) -0.70) is better than those of the fittings
between %FA and other important molecular descriptors (eq
2 in Table 1 and Figure 3a). Clark even found that an
excellent sigmoidal relationship could be established between

Table 1. Multivariate Prediction Models for Intestinal Absorption

(1) %FA ) 109.12- 0.34TPSA
n ) 553,r ) 0.70, SD) 20.03,F ) 544.51

(2) %FA ) 68.54+ 6.07 logP
n ) 553,r ) 0.48, SD) 24.75,F ) 165.12

(3) %FA ) 78.17+ 6.32 logD6.5

n ) 553,r ) 0.63, SD) 22.03,F ) 354.21
(4) %FA ) 89.40- 25.11Nrule-of-5

n ) 553,r ) 0.61, SD) 22.36,F ) 327.08
(5) %FA ) 70.64+ 0.14nHBD

2 + 11.74<2 - Nrule-of-5> - 9.59<0.05- log D6.5> - 0.23<TPSA- 71.00> +0.30 logD6.5
2

n ) 455, LOF) 284.69,r ) 0.83, SD) 15.50,F ) 192.58
(6) %FA ) 103.87+ 0.35nHBD

2 - 3.98nHBD - 7.78<0.09- log D6.5> - 0.26<TPSA- 71.43> - 0.02shadow- X2

n ) 455, LOF) 285.65,r ) 0.82, SD) 15.67,F ) 190.36
(7) %FA ) 93.87+ 0.16nHBD

2 - 9.70<0.05- log D6.5> - 0.23<TPSA- 71.43> - 10.73Nrule-of-5

n ) 455, LOF) 286.19,r ) 0.82, SD) 15.71,F ) 189.83
(8) %FA ) 97.12- 11.48Nrule-of-5 - 8.99<0.05- log D6.5> - 0.15<TPSA- 49.41> + 0.17 logD6.5

2 + 3.76<nHBD - 7>
n ) 435, LOF) 171.81,r ) 0.87, SD) 12.70,F ) 277.59

(9) %FA ) 98.00- 9.80Nrule-of-5 - 8.02<0.08- log D6.5> - 0.17<TPSA- 49.69>+ 4.27<nHBD - 7>
n ) 435, LOF) 173.22,r ) 0.87, SD) 12.68,F ) 339.84
(10) %FA) 96.99- 11.86Nrule-of-5 - 9.19<0.05- logD6.5> - 0.15<TPSA- 49.41> + 2.89<nHBD - 5> + 0.19 logD6.5

2

n ) 435, LOF) 173.68,r ) 0.87, SD) 12.77,F ) 273.69
(11) %FA) 92.84- 11.28Nrule-of-5 - 9.25<0.05- log D6.5> - 0.26<TPSA- 49.33> + 3.02<nHBD - 5> + 0.19 logD6.5

2 + 0.10TPSA
n ) 435, LOF) 174.58,r ) 0.87, SD) 12.64,F ) 228.82

Figure 3. Correlation between (a) TPSA and (b) logD6.5 with
intestinal absorption.
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%FA and PSA (r2 ) 0.94) for a set of 20 drugs covering a
wide range of %FA values in humans and claimed that drugs
that are completely absorbed (FA> 90%) had a PSAd e 61
Å2 while drugs that are less than 10% absorbed had a PSAd

g 140 Å.46 It is interesting to validate the performance of
the rules proposed by Clark on our data set. In the data set,
there are 48 molecules with a FA% equal to or smaller than
10% (the compounds with positively charged nitrogen are
not included). In these 48 molecules, seven of them have a
polar surface area smaller than 140 Å2. Furthermore, 14
molecules are apparent false positives using the rule of TPSA
larger than 140 Å2. Because all possible drugs transported
by carriers were eliminated in our data set, it is likely that
many compounds are real false positives. When we applied
the value of 61 Å2 to this set, we picked out 230 compounds
as possibly being well-absorbed. In these 230 compounds,
47 have an intestinal absorption smaller than 90% and 17
smaller than 80%. For the 266 compounds with a TPSA
larger than 61 and smaller 140 Å2, 165 compounds have an
intestinal absorption larger than 90% and five compounds
smaller than 10%. It is clear that the performance of the
TPSA criterion is not very reliable to identify poor absorption
or good absorption, and HIA is certainly not only determined
by polar surface area.

PSA or TPSA is usually considered as a parameter to
define the hydrogen-bonding potential because it is closely
correlated with the number of hydrogen-bond donors or
acceptors. For example, TPSA is highly correlated with the
number of hydrogen-bond acceptors (r ) 0.93) and the total
number of hydrogen-bond donors (r ) 0.82). Put simply,
TPSA can account for the possible negative electrostatic or
hydrogen-bonding contribution of the polar atoms. But PSA
or TPSA can only account for the hydrogen-bonding or
electrostatic contribution of these atoms on the molecular
surface. In some cases, the highly charged atoms located in
the interior of the molecule may have great impact on the
interactions between the transported molecule and membrane.
In our data set, there are 26 compounds with at least one
charged nitrogen. For these 26 compounds, most of them
have very low TPSA values, but all of them are poorly
absorbed. The reason may be that the electrostatic contribu-
tion of the high-charged atoms cannot be effectively ac-
counted for by the polar surface area because the positive-
charged nitrogen atoms are usually shielded by the connected
atoms. Another possible explanation is that the charged
molecule might diffuse across the membrane boundary as
ion pairs. It is likely that ion-pair formation with cations
derived from typical drug bases will be much more favored
than ion-pair formation with tetraalkyammonium cations. So
the isolated positive charge may have a great negative effect
on the diffusion of drugs.47

3.b. Hydrophobicity. In our previous work,18 it has been
proven that the distribution coefficient, logD, was a very
important indicator of Caco-2 permeability. Actually, the
hydrophobic parameters (logP or log D) have long been
known to be important for membrane permeation. First, a
direct fitting of %FA with the partition coefficient (logP)
was conducted, which produced anr of approximately 0.48
(eq 2 in Table 1). Then, we correlated %FA with the
predicted logD values at pH) 2, 5.5, 6.5, 7.4, and 10, and
the correlation coefficients are 0.48, 0.60, 0.63, 0.62, and
0.54, respectively. The best correlation was obtained at pH

) 6.5 (eq 3 in Table 1). Compared with eq 2, the correlation
coefficient and the variance ratio of eq 3 were improved
greatly. The plot of correlation of logD6.5 versus %FA is
shown in Figure 3b, indicating that hydrophobic molecules
with high logD6.5 values are favorable to diffuse across the
biological membrane, and the hydrophilic molecules with
low log D6.5 values usually have a low percentage of
intestinal absorption. In most works, researchers like to use
log P instead of logD because logP is easier to compute.
But indubitably, logD is more effective in the prediction of
membrane permeability than logP. In Figure 3b, logD6.5 )
-3.2 may be identified as a rough bound to identify the
compounds with a %FA smaller than 10% from the others.

We should emphasize that in our analysis the predicted
log D values were used. In our previous work,18 we correlated
Caco-2 permeabilities with experimental and predicted log
D values and found that the experimental logD performed
better than the predicted values. Here, we performed a
correlation between the experimental logD values and the
predicted logD values at pH) 7.4 for 68 compounds
collected in our previous work18 (Figure S1 in the Supporting
Information). For these 68 compounds, 48 compounds show
prediction errors smaller than 1.0 log unit, and seven
compounds show prediction errors larger than 2.0 log units.
So, although the logD values of most compounds can be
satisfactorily predicted by ACDLABS, the available predic-
tion methods for logD still have great room for improvement
both on logP prediction and on pKa prediction.

3.c. The Parameter Related to Rule of Five.Here, the
parameter,Nrule-of-5, defined the number of violations of the
rule of five proposed by Lipinski et al.3 The rule of five
was widely applied to identify compounds with possible poor
absorption and permeability. According to the correlation
coefficient (r ) -0.61), the prediction capability ofNrule-of-5

is not satisfactory. Certainly, the rule of five is not used for
the accurate prediction of intestinal absorption but, rather,
for a rough classification of compounds. We can give an
estimation of the performance ofNrule-of-5 on the classifica-
tion of intestinal absorption. Here, this compounds was
considered to be poorly absorbed ifNrule-of-5 is equal to or
larger than 2; otherwise, it was considered to be moderately
or highly absorbed. For all 48 molecules with a FA% equal
to or smaller than 10%, 28 compounds had anNrule-of-5 g
2. That is to say, 20 poorly absorbed compounds were
misclassified. Moreover, 12 compounds among the other 505
compounds with a %FA larger than 10% were misclassified.
Obviously, the rule of five is not a good predictor to estimate
HIA. Compared with the performance of TPSA, the criterion
of g2 is less reliable for identifying poorly absorbed
molecules from the others.

4. Prediction Models Proposed by GFA.According to
the above discussion, we know that HIA is controlled by
many molecular properties rather than by a single one. The
prediction based on these important molecular properties
should give more reliable output than that based on a single
molecular property. To automatically select the most crucial
descriptors determining HIA, the GFA technique was applied
here to search the combination space of molecular properties.
We used 455 compounds to create the prediction models,
and the remaining 98, randomly selected from the entire
database, were used as an external test set. In GFA
calculations, besides the linear equation terms, the quadratic
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equation terms and the linear spline equation terms were also
introduced. The splines used here were denoted with angled
brackets. For example,<f(x) - a> was equal to zero if the
value of f(x) - a was negative; otherwise, it was equal to
f(x) - a. The regression with splines allows the incorporation
of features that do not have a linear effect over their entire
range.

After the GFA calculations, the 100 best models were
obtained, and the top 10 were picked out for further analysis.
Actually, the top 10 best-scored equations shared very similar
information in terms of statistical parameters and types of
descriptors. Some equations can be classified into one group,
and the final representative two equations are shown in Table
1 (eqs 5, 6, and 7). Using eqs 5-7, the absolute mean errors
are only 11.6%, 11.8%, and 11.8%, respectively, but there
are still some compounds with large prediction errors. If we
used eq 5 for prediction, there are 21 compounds with a
prediction error larger than 35%, which include meropenem,
pentamidine, streptozocin, nedocromil, imipenem, phthalyl-
sulfathiazole, succinylsulfathiazole, sulbactam, amygdalin,
chlorhexidine, diatrizoate, mitoxantrone, moexipril diacid,
netivudine, nadolol, trandolapril, ceftizoxime, telithromycin,
acipimox, cyclopenthiazide, and ergotamine. Among these
21 compounds, 16 compounds with experimental %FA
values smaller than 50% were highly overestimated, while
the other five compounds were underestimated. Now, we
cannot find solid evidence to explain why 16 compounds
were highly overestimated. The first possible reason is that
some highly charged groups could not be precisely described
by polar surface area. For example, succinylsulfathiazole,
phthalylsulfathiazole, and sulbactam have the-SdO(dO)
group. The influence of this highly charged group may not
be fully described by polar surface area. Another important
reason is that some compounds may be the strong substrates
of g-pg, and their diffusions are greatly effected by the efflux
effect of p-gp. A very important feature of the prediction of
the training set using eq 5 is that only one compound
(ceftizoxime) moderately or highly absorbed was predicted
to be poorly absorbed. This feature is very appealing because,
from a practical point of view, we were most concerned about
the false prediction of compounds highly absorbed. When
the compounds are discarded on the basis of the prediction,
there is a slim chance that those compounds were tested by
experiments.

If these 21 possible outliers were not included in the
training set, the correlations of the model could be greatly
improved. The top four independent prediction models are
listed in Table 1 (eqs 8-11). In eqs 8-11, it is interesting
to find that the spline models were applied for three important
descriptors: TPSA,nHBD, and logD6.5, indicating that these
three descriptors are not linearly correlated with %FA in the
whole property space. In fact, the relationships between
molecular descriptors and %FA may not always be well-
described by linear correlation. For example, Palm et al. have
reported a good sigmoidal relationship between the intestinal
absorption and PSA. But according to Figure 3a, it is obvious
that the relationship between %FA and TPSA cannot be
simply described by a linear regression, while it also cannot
be described effectively by a sigmoidal fitting because a
sigmoidal curve should possess two plateau regions at the
low and high values of the variable. In eqs 8-11, the
threshold value of TPSA is about 50 Å, demonstrating that

higher TPSA values produce low permeation while the effect
takes effect only when the polar surface area is larger than
50 Å2. A spline model for logD6.5 is also included in the
prediction models. A threshold of 0.05 was found for log
D6.5, which means that lower logD6.5 values produce low
permeation when it is smaller than 0.05. The interpretation
of the nHBD term is not very straightforward. This term
indicates thatnHDB is unfavorable for HIA when it is larger
than 5 or 7. This term may be used for the neutralization of
the strong effect of TPSA andNrule-of-5.

Validation is crucial in any QSAR modeling. The calcu-
latedq (0.87) shows that eq 8 is reliable. Certainly, the high
value ofq appears to be the necessary but not the sufficient
condition for the models to have a good predictive power.
Golbraikh and Tropsha even emphasized that the actual
predictive ability of a QSAR model can only be estimated
using an external test set of compounds that were not used
for building the model.48 The selection of the definitive model
was carried out on the basis of prediction for the compounds
comprising the validation test. Here, the actual prediction
powers of eqs 5-11 were validated by an external test set
of 98 compounds. Actually, these seven models do not show
large differences on the prediction capability of the test set,
and the absolute mean error for eqs 5-11 are 7.78%, 8.52%,
7.86%, 7.33%, 7.32%, 7.42%, and 7.47%, respectively. It is
thus difficult for us to give a decisive conclusion as to which
model is the best on the basis of the fitness score and the
predictions for the limited test compounds. According to the
prediction on the external test set, eqs 8 and 9 may be a
little better than the other models. It is interesting that the
prediction models with and without the 21 possible outliers
do not affect the actual prediction of the test set obviously.

Usually, that selection of a single model and the discarding
of the remaining models may not be the most advantageous
choice, and the average based on the outputs of the multiple
models is more reliable.49 The absolute mean error of 7.32%
of the average prediction based on the outputs of eqs 8-11
is quite similar to that of eq 9, and it is better than those of
the other equations. So using multiple models may not be
as risky as using a single prediction model. According to
the actual prediction on the external test set, eq 9 was the
best model. The plot of the experimental %FA data versus
the predicted values is shown in Figure 4. The observed %FA
values, calculated and residuals, are shown in Table 2. For
this test set, the prediction model gives very effective
prediction [r ) 0.89, SD) 10.28, AME (absolute mean
error) ) 7.32%], which is even better than predictions of
the training set. In the test set of 98 compounds, 73 have
the prediction error smaller than 10%, 19 have the prediction
error between 10% and 20%, two have it between 20 and
25%, and four have it larger than 25%. These four com-
pounds with the worst predictions are tiludronic acid,
metolazone, cinoxacin, and betahistine. In these four com-
pounds, tiludronic acid and metolazone were highly over-
estimated. The overestimation may be caused by the intrinsic
limitation of polar surface area. Tiludronic acid contains two
-PO3 groups, and metolazone contains a-SO2(NH2) group.
In the definition of polar surface area, sulfur and phosphor
atoms are not considered. While in these two groups, P and
S atoms are highly positive charged. So the polar surface
area may not properly describe these highly charged groups.
Actually, in the training set, some compounds containing
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the-SO2 group were also overestimated, such as succinyl-
sulfathiazole, phthalylsulfathiazole, and sulbactam.

5. Classification Based on Recursive Partitioning.In
the above section, a group of regression models with good
predictive power was developed. In the practical process of
drug discovery, the accurate prediction for %FA is not always
necessary, and we only want to classify the compounds into
good or poor absorption. The classification model has some
advantages over the linear correlation models. First, the
nonlinear effects that cannot be effectively considered by
the regression models are implicitly accounted for in clas-
sification. Second, the statistical classification methods can
discriminate different biological mechanisms that regression
models cannot. Third, the precise experimental values are
not usually necessary for classification, because classification
deals with binary data, accepting any variability of %FA
above 30%. Here, RP was applied for classification, which
can find decision trees to classify molecules into different
categories. Compared with “the blind operations” of ANNs
and SVMs, the results of RP can be easily converted to
simple hierarchical rules, which are clearly interpreted.
According to the criteria used by Kansy et al.,50 in the
training set of 481 compounds, 74 compounds that have low
%FA values of less than 30% were grouped into class 1,
and 407 compounds with a moderate or high percentage of
intestinal absorption of more than 30% were group into class
2. It should be noted that the 26 compounds with at least
one positively charged nitrogen atom were also included in
the training set. The test set of 98 compounds was used to
test the actual performance of the obtained classification
model. Then, a RP analysis was conducted to see whether
these models correctly predict the compounds in their
respective groups. All 45 descriptors were applied in RP
analysis.

It is encouraging to find that the obtained model has very
good classification performance on the training set, and it
can correctly identify 95.9% (71/74) of the compounds in
class 1 and 96.1% (391/407) of the compounds in class 2.
For the 74 compounds with a %FA equal to or smaller than
30%, only three compounds were misclassified, including
sulbactam, moexipril diacid, and netivudine. In fact, these

three compounds were also highly overestimated by the
regression models. In the above analysis, we already knew
that, for 48 compounds with an intestinal absorption smaller
than or equal to 10%, 13 of them have large a prediction
error. Among these 13 compounds, 11 of them can be
correctly classified by RP. The possible reason of the better
performance of the classification model is that the nonlinear
effects of some molecular descriptors may not be well-
explained by the regression models. Furthermore, the actual
prediction of the classification model on the test set was
verified. The test set included five compounds in class 1 and
93 compounds in class 2. The performance on the test set is
also very satisfactory. All five compounds in class 1 were
correctly classified, and only three compounds in class 2,
which are erythromycin, reproterol, and telmisartan, were
not correctly identified. Among these three compounds, the
%FA value for erythromycin is not high, which is 35%. So
it is understandable that this compound is easily misclassified.
Although a single property cannot be used as an effective
rule for classification, the proposed hierarchical rules com-
bining several properties together is very effective.

The decision tree is shown in Figure 5, which can be easily

converted to a group of hierarchical rules. Besides the
property of N+ atom (the positively charged nitrogen atom),
the several other molecular parameters used for the hierarchi-
cal rule include logD6.5, TPSA,NHBD, and MW. Actually,
log D6.5, TPSA, andNHBD are also used in the above
correlation models. From the hierarchical level in Figure 4,
the properties of TPSA, logD6.5, and NHBD are more
important than MW. So HIA is a complicated function of
several properties including hydrophobicity, hydrogen-bond-
ing potential, and molecular weight, and the reliable rules
can only be obtained by considering all of these important
properties. Here, the decision tree is only used for the
prediction of HIA related to passive diffusion. We certainly
can extend the decision tree by integrating other rules for
predicting active transport or first pass metabolism. For
example, we can define “substructure-specific rules” related
to specific metabolism processes.

Figure 4. Correlation between experimental %FA and the predicted
values for 98 compounds in the test set using eq 9 in Table 1.

Figure 5. Decision tree to classify compounds into good and poor
absorption by using recursive partitioning.
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Table 2. Calculated Molecular Properties and the Experimental and Calculated %FA Values for Compounds in the Test Set

number name NHBD log D6.5 TPSA Nrule-of-5 %FAexp %FApred classexp classpred

1 amikacin 17 -9.3 331.9 3 0 -12.9 1 1
2 moxalactam 4 -3.9 234.4 2 0 14.9 1 1
3 kanamycin 14 -7.0 285.7 3 1 0.7 1 1
4 zanamivir 9 -6.6 198.2 2 2 7.5 1 1
5 tiludronic acid 4 -5.9 134.7 0 6 35.3 1 1
6 erythromycin 5 1.3 193.9 3 35 43.7 2 1
7 tranexamic acid 3 -2.2 63.3 0 55 77.5 2 2
8 reproterol 4 -2.9 131.2 1 60 50.0 2 1
9 metolazone 3 3.3 100.9 0 64 89.2 2 2

10 hydrochlorothiazide 4 -0.1 135.1 0 68 82.1 2 2
11 naratriptan 2 -1.6 73.6 0 70 80.6 2 2
12 desogestrel 1 6.6 20.2 1 72 88.2 2 2
13 estramustine 1 5.3 49.8 1 75 88.2 2 2
14 propylthiouracil 2 1.4 73.2 0 76 93.9 2 2
15 ethambutol 4 -3.0 64.5 0 78 70.8 2 2
16 cyproheptadine 0 4.0 3.2 1 80 88.2 2 2
17 flunisolide 2 2.2 93.1 0 80 90.5 2 2
18 losartan 2 1.8 92.5 0 80 90.6 2 2
19 metyrapone 0 1.2 42.9 0 80 98.0 2 2
20 pizotyline 0 3.7 31.5 1 80 88.2 2 2
21 piroximone 2 2.1 71.1 0 81 94.3 2 2
22 sorivudine 4 -0.9 119.3 0 82 78.2 2 2
23 propiverine 0 4.2 38.8 1 84 88.2 2 2
24 fenoprofen 1 1.6 46.5 0 85 98.0 2 2
25 topiramate 2 3.0 123.9 0 86 85.2 2 2
26 clobazam 0 1.6 40.6 0 87 98.0 2 2
27 moclobemide 1 0.3 41.6 0 88 98.0 2 2
28 chloramphenicol 3 1.0 115.4 0 89 86.7 2 2
29 alprazolam 0 2.5 43.1 0 90 98.0 2 2
30 bicalutamide 2 4.9 115.6 0 90 86.6 2 2
31 diazoxide 1 1.1 66.9 0 90 95.0 2 2
32 ethionamide 2 1.2 71.0 0 90 94.3 2 2
33 hydroxychloroquine 2 0 48.4 0 90 97.6 2 2
34 levosimendan 2 0.1 113.4 0 90 87.0 2 2
35 mestranol 1 5.2 29.5 1 90 88.2 2 2
36 nifedipine 1 2.3 110.5 0 90 87.5 2 2
37 pindolol 3 -0.7 57.3 0 90 90.7 2 2
38 rizatriptan 1 -1.7 49.7 0 90 83.5 2 2
39 telmisartan 1 4.1 70.7 2 90 74.8 2 1
40 tolbutamide 2 0.6 83.7 0 90 92.1 2 2
41 saccharin 1 -1.1 71.6 0 91 84.9 2 2
42 codeine 1 -0.6 41.9 0 93 92.8 2 2
43 dienogest 1 2.0 61.1 0 94 96.0 2 2
44 acitretin 1 3.9 46.5 1 95 88.2 2 2
45 bifemelane 1 1.1 21.3 0 95 98.0 2 2
46 cinoxacin 1 -3.8 88.4 0 95 60.2 2 2
47 delmopinol 1 4.0 32.7 0 95 98.0 2 2
48 fenfluramine 1 0.1 12.0 0 95 97.8 2 2
49 gliquidone 2 1.6 130.3 1 95 74.3 2 2
50 labetalol 5 -0.2 95.6 1 95 78.4 2 2
51 naltrexone 2 0.6 70.0 0 95 94.5 2 2
52 oxprenolol 2 -0.3 50.7 0 95 94.7 2 2
53 phenprocoumon 1 2.8 46.5 0 95 98.0 2 2
54 propoxyphene 0 2.9 29.5 1 95 88.2 2 2
55 sulfamethazine 3 0.8 106.3 0 95 88.2 2 2
56 tramadol 1 -0.2 32.7 0 95 95.7 2 2
57 capecitabine 3 0.0 120.7 0 96 85.4 2 2
58 praziquantel 0 2.4 40.6 0 96 98.0 2 2
59 diclofenac 2 1.9 49.3 0 97 98.0 2 2
60 trimethoprim 4 0.0 105.5 0 97 87.9 2 2
61 desipramine 1 1.1 15.3 0 98 98.0 2 2
62 imipramine 0 2.1 6.5 0 98 98.0 2 2
63 maprotiline 1 1.5 12.0 0 98 98.0 2 2
64 phenylbutazone 0 3.9 40.6 0 98 98.0 2 2
65 ximoprofen 2 0.2 69.9 0 98 94.5 2 2
66 desmethyldiazepam 1 3.1 41.5 0 99 98.0 2 2
67 naproxen 1 1.3 46.5 0 99 98.0 2 2
68 tolmetin 1 -0.7 59.3 0 99 90.0 2 2
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CONCLUSION

In the current work, a large carefully validated database
of intestinal absorption was reported. On the basis of the
large set of drug or druglike molecules, the correlation and
classification models were proposed by genetic function
approximation and recursive partitioning techniques, respec-
tively. The high qualities of those models were validated by
the satisfactory predictions on the training and test sets.
Overall, our regression and classification models have good
performance on the training and test sets; however, there is
still room to further improve the models. First of all, the
quality and quantity of our data set should be improved
further. In the current work, our data analysis and models
were purely based on the passive diffusion mechanism.
Although most of the compounds diffused by carrier-
mediated transport were excluded, we are not sure all of the
remaining compounds for model construction are transported
by the passive diffusion mechanism. We expect that our
database can be further improved by checking more refer-
ences and by introducing more experimental data with high
quality. Another important problem of the current data set
is that the %FA values are not “balanced”, because the data
set is heavily skewed toward well-absorbed compounds. In
our data set, only 79 compounds have %FA values equal to
or less than 30% (including 26 compounds with at least one
charged nitrogen). The skewed distribution is also found for
the other data sets. For example, Wessel et al.’s data set only
includes 10 compounds with %FA values equal to or less
than 30%,15 and the Zhao et al.’s data set only includes 15
compounds having %FA values equal to or less than 30%.4

This bias may tend to cause the prediction models to be less
accurate in predicting %FA values for poorly absorbed
compounds. Second, considering that drug absorption is a
very complicated process arising from multiple physiological

processes, approaches combining models considering both
passive diffusion and active transport should be considered,
especially when more high-quality data become available in
the future. In addition, we should introduce more structure-
based rules related to first-pass metabolism. Yoshida and
Topliss reported a classification model for bioavailability.51

This classification model includes three molecular descriptors
and 15 other structural descriptors relating primarily to well-
known metabolic processes. We expect that more meaningful
structural descriptors on first-pass metabolism can be identi-
fied through the analysis of our bioavailability database.20

The newly introduced descriptors can improve not only the
prediction models but also the decision tree for classifica-
tion.
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Table 2. Continued

number name NHBD log D6.5 TPSA Nrule-of-5 %FAexp %FApred classexp classpred

69 aminoglutethimide 3 1.4 72.2 0 100 94.1 2 2
70 azelastine 1 1.0 35.6 0 100 98.0 2 2
71 betahistine 1 -2.9 24.9 0 100 74.5 2 2
72 buspirone 0 3.1 69.6 0 100 94.6 2 2
73 chlorambucil 1 1.4 40.5 0 100 98.0 2 2
74 cinchonine 1 0.7 36.4 0 100 98.0 2 2
75 dextromoramide 0 3.1 32.8 0 100 98.0 2 2
76 doxepin 0 0.3 12.5 0 100 98.0 2 2
77 etoricoxib 0 -0.3 80.9 0 100 89.7 2 2
78 flurazepam 0 1.1 35.9 0 100 98.0 2 2
79 gestodene 1 3.7 37.3 0 100 98.0 2 2
80 guanfacine 4 1.6 81.5 0 100 92.5 2 2
81 indoprofen 1 0.7 57.6 0 100 96.6 2 2
82 ketazolam 0 3.4 49.9 0 100 98.0 2 2
83 linezolid 1 0.4 71.1 0 100 94.3 2 2
84 mebendazole 2 2.8 84.1 0 100 92.1 2 2
85 methocarbamol 3 0.6 91.0 0 100 90.9 2 2
86 nafronyl 0 2.4 38.8 0 100 98.0 2 2
87 nilutamide 1 3.3 95.2 0 100 90.1 2 2
88 norgestrel 1 3.7 37.3 0 100 98.0 2 2
89 oxatomide 1 3.0 38.8 0 100 98.0 2 2
90 penbutolol 2 1.6 41.5 0 100 98.0 2 2
91 phenobarbital 2 1.6 75.3 0 100 93.6 2 2
92 procyclidine 1 0.9 23.5 0 100 98.0 2 2
93 quinagolide 2 0.8 81.3 0 100 92.5 2 2
94 stavudine 3 -0.8 88.2 0 100 84.3 2 2
95 tamsulosin 3 0.0 108.3 0 100 87.0 2 2
96 tetrabenazine 0 3.2 38.8 0 100 98.0 2 2
97 trazodone 0 1.4 42.4 0 100 98.0 2 2
98 zaleplon 0 0.9 74.3 0 100 93.7 2 2
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