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Abstract

Ž .In this paper, genetic algorithm GA was used to both sample the conformational spaces and thoroughly search the global
conformations of peptides. d-conotoxin PVIA, a peptide of 29 amino acids, was used to test our procedure. The results indi-
cated that this procedure could not only successfully explore a set of the conformational spaces using a hybrid Monte Carlo
simulationsrGA minimization but also find the global conformations for most of peptides using pure GA minimization.
q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Conformational analysis now becomes an impor-
tant research branch in the field of computational
chemistry. Most methods of conformational analysis
can be grouped into two classes: one is systematic
searching, another is random searching including

Ž .Monte Carlo simulations and genetic algorithm GA
minimization. Molecular dynamics and distance ge-
ometry are also being widely used now. It is believed
that molecular dynamics and GA are the most effi-

w xcient methods to explore the global conformation 1 .
In order to sample the conformational spaces effi-
ciently, some hybrid methods are proposed, such as
Monte Carlo simulationsrsimulated annealing and
hybrid Monte Carlo simulationsrmolecular dynam-
ics. GA, which is an intelligent method between the
stochastic and gradient methods, is now being widely

w xused in conformational analysis 2–5 . It has not only
overcome the potential barriers easily as random
search, but also has good partial solutions survived.
The strength of GA lies in its ability to handle large
and diverse sets of variables. It is especially suitable
for GA to explore the global conformations of pep-
tides and proteins which have a great deal of vari-

Ž .ables twist angles .
In this paper, we offered a procedure to explore the

global conformation of peptides using GA minimiza-
tion. A hybrid Monte Carlo simulationrGA mini-
mization to sample the conformational spaces of pep-
tides and proteins is also proposed. d-conotoxin PVIA
w x6,7 , a peptide of 29 amino acids was used to test our
procedure and the results are encouraging.

2. Method

2.1. Modeling conformation

First, the initial structure of the peptide is mod-
eled using 20 standard amino acids. Each amino acid
has an index to inform the program which form of the
secondary structure this residue prefers. These infor-
mation can be obtained easily using some secon-
dary-structure prediction programs. The initial con-
formation can also be modeled using randomly gen-
erated twist angles.

2.2. EÕaluating energy

The following energetic terms are included in our
program: Van der Waals energy, electrostatic energy,
H-bond energy, torsional energy, disulfide bond en-
ergy and distance restrained energy. Other energetic
terms are omitted for simplification. The restrained
energy is calculated using a harmonic potential func-
tion. The force field is AMBER.

2.3. Conformation searching

A population of ‘chromosomes’ is first generated
and the ‘gene’ is twist angle. Each ‘chromosome’
represents a conformation. The fitness score is the
conformational energy; the lower the energy, the
higher the fitness score. The three operations of GA
which are crossover mutation and selection are re-
peatedly performed. The crossover operator ran-
domly chooses two ‘chromosomes’ as parents to
breed a pair of children maintaining some of their
characteristics by dividing both parents at a ran-
domly chosen point and then joining the pieces to-
gether. If the mutation probability exceeds a ran-
domly generated number, mutation operator is per-
formed by replacing a certain ‘gene’ in a ‘chro-
mosome’ with a randomly generated one. The selec-
tion operator chooses ‘chromosomes’ in a manner
which is weighted according to their fitness values;
the fitter a ‘chromosome’, the more chances it has of
being selected. Furthermore, a set of best-performing
‘chromosomes’ from one generation is frequently
saved and survive unchanged into the next genera-

Ž .tion the elitist strategy . Although GA is an out-
standing stochastic search algorithm, it is still com-
mon that GA staggers in the local optima, a modifi-
cation with the normal GA is that for each genera-
tion, a set of the lowest ‘chromosomes’ are replaced
with randomly generated ones. We hope this com-
bined method can efficiently overcome the defi-
ciency of GA.

The convergence criteria of GA can be grouped
into two classes: the inter-population and intra-popu-
lation convergence. The inter-population conver-
gence criterion monitors how much the average fit-
ness of the population has changed since the last
check. If it has not changed by user-defined itera-
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w xtions then the GA is deem to have converged 8 . The
convergence criterion of our program belongs to this
class. When the average fitness score of a population
is not improved after certain iterations, say 100 itera-
tions, the convergence is achieved. For a peptide with
50 residues, 1000–2000 iterations are enough to find
the global conformation.

As for the hybrid Monte Carlo simulationsrGA
minimization procedure, certain steps of Monte Carlo
simulation are primarily performed to equilibrate the
system, then, GA is easily introduced into Monte
Carlo simulations through performing GA minimiza-
tion every each Monte Carlo steps.

In the case of d-conotoxin PVIA, the randomly
generated conformation was first submitted to the
2000-step GA minimization with an aim to explore
the global conformations. Then a hybrid Monte Carlo
simulationrGA minimization for conotoxin PVIA
with one or two disulfide bonds restrained, respec-
tively, was performed in order to understand the
folding and deforming processes of this peptide. The
force constant of the restrained energetic term is 100

y1 ˚ y2kJ mol A . The Monte Carlo simulation steps to-

tal 50,000 and the first 10,000 were performed sim-
ply to equilibrate the system, then a 300-step GA
minimization was performed every 2000 Monte Carlo
simulation steps. The lowest energetic conformation
of each GA minimization was stored, and finally,
there was a total of 20 conformations saved. The na-
tive conformation is the lowest energetic conforma-
tion of the 20 ones.

As for GA, the population size and elite size of
‘chromosomes’, the mutation ratio, crossover ratio as
well as the simulation steps play main roles in the
minimization. The population size is usually three-
fold or fourfold the number of variables. Elite size is
about 5% to 10% of population size. In the case of
d-conotoxin PVIA, the population size is 300, the
elite size is 15. The mutation ratio and crossover ra-
tio are 0.05 and 0.35 in our procedure. By analogy
with nature, mutation operator is generally invoked
with a low frequency, the ratio is usually smaller than
0.1. The simulation steps may be changed for differ-
ent molecules. For a typical peptide with 50 residues,
the steps of pure GA minimization are about 1500.
However, 300 steps are enough to perform a hybrid

Ž .Fig. 1. Amino acid sequence of conotoxin PVIA. The natural form of this peptide can form three disulfide bonds 3–18, 20–22, 17–27 .
)O stand for hydroxyproline.
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Fig. 2. The superimposed conformations of the natural form with its homologous proteins. For each case, the left picture is the native con-
Ž . Ž . w x Ž .formation of d-conotoxin PVIA, the right one is its homologous proteins. a IOMN omega-conotoxin M V P C 5 , RMSDs2.880; b

Ž . Ž . Ž . w x Ž . ŽICCO omega-conotoxin GVIA , RMSDs2.547; c IOMC omega-conotoxin GXIA 6 , RMSDs2.778; d IOMG omega-conotoxin
. w xMV P A 7 , RMSDs2.879.

Monte Carlo simulationrGA simulation. The above
mentioned parameters can be changed by the users.

3. Results and discussion

Fig. 1 shows the amino acid sequence of d-con-
otoxin PVIA, the natural form of this peptide can
form three disulfide bonds. Fig. 2 shows the super-
imposed conformations of the natural form with its
homologous proteins, for example omega-conotoxin

w xM V P C 9 , omega-conotoxin GVIA, omega-con-

w xotoxin GXIA 10 and omega-conotoxin MV P A
w x Ž .11 . All of the root mean square distance RMSDs
are reasonable. Our procedure of GA minimization to
explore the global conformation is really a successful
one. We also carried out hybrid Monte Carlo simula-
tionsrGA for conotoxin PVIA with partial disulfide
bonds formed. Fig. 3 shows the global conformations
of conotoxin PVIA with partial disulfide bonds
formed. The first three configurations form only one
disulfide bond, however the last three form two. We
can presume the deforming process of this peptide
according to the conformational energies of cono-

Ž . y1 Ž .Fig. 3. The global conformations of conotoxin PVIA with partial disulfide bonds formed. A 3–18 y688.4 kJ mol ; B 10–22 y871.1
y1 Ž . y1 Ž . y1 Ž . y1 Ž .kJ mol ; C 17–27 y772.5 kJ mol ; D 3–18, 10–22 y539.2 kJ mol ; E 3–18, 17–27 y619.9 kJ mol ; and F 10–22, 17–18

y562.7 kJ moly1.
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toxin PVIA with different disulfide bonds formed. In
other words, from the energies of the global confor-
mations and other low energetic conformers, we can
suppose which disulfide bond will break first and
which one will follow when the peptide deforms.
Among the configurations which has two disulfide
bonds formed, configuration E has the lowest en-
ergy, which is y619.9 kJ moly1, so the disulfide
bond between the cystine 10 and cystine 22 may be
broken first. The energies of other conforms also
support this deduction. Configuration A which has
disulfide bond formed between cystine 3 and 18 has
energy of y688.4 kJ moly1. However, the energy of
configuration C which has one disulfide bond be-
tween cystine 17 and 27 is more than 80 kJ moly1

lower than the previous one. So the disulfide bond
between cystine 3 and 18 may be broken more easily
than the one between cystine 17 and 27. In short, if
the deformed d-conotoxin PVIA revives again, a
disulfide bond between cystine 17 and 27 will be
formed, followed by the bond between the cystine 3
and 18, and then by the disulfide bond between cys-
tine 10 and 20. The information from the peptide de-
forming and reforming procedures can guide us to
find practical synthesis paths.
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