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Abstract: Approximately 40%-60% of developing drugs failed during the clinical trials because of ADME/Tox deficien-
cies. Virtual screening should not be restricted to optimize binding affinity and improve selectivity; and the pharmacoki-
netic properties should also be included as important filters in virtual screening. Here, the current development in theo-
retical models to predict drug absorption-related properties, such as intestinal absorption, Caco-2 permeability, and 
blood-brain partitioning are reviewed. The important physicochemical properties used in the prediction of drug absorp-
tion, and the relevance of predictive models in the evaluation of passive drug absorption are discussed. Recent develop-
ments in the prediction of drug absorption, especially with the application of new machine learning methods and newly 
developed software are also discussed. Future directions for research are outlined. 
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 In the traditional drug design paradigm, the central stage 
focuses on the activity and the specificity of a drug candi-
date, while some other properties, especially those related to 
absorption, distribution, metabolism, excretion (ADME) and 
even toxicity (Tox), are only considered at a later stage. The 
in vitro screening using the traditional strategy may usually 
lead to potent ligands but not necessarily good drug candi-
dates, since lead compounds that have high molecular weight 
and increased lipophilicity usually tend to have high potency 
but poor absorption. It has been estimated that about 
40%-60% of such failures are caused by ADME/Tox defi-
ciencies [1-3]. The significant failure rate of drug candidates 
in late stage development is driving the need for develop-
ment of new in vitro, in vivo, and in silico tools that can 
eliminate inappropriate compounds before substantial re-
sources are wasted. Accordingly, a paradigm shift has oc-
curred in the initial phases of drug discovery. In addition to 
potency and selectivity towards the biological target of in-
terest, ADME/Tox properties of a drug are now taken into 
account at an early stage. Beginning in the early- to 
mid-1990s, many pharmaceutical companies took steps to 
integrate the functions of discovery and development scien-
tists. Development scientists are involved in the early stage of 
the drug discovery program and provide input to in vitro and 
in vivo optimization process [3]. Furthermore, advances in 
automation technology and experimental ADME/Tox tech-
niques, such as the Caco-2 permeability screening based on 
the three-day Caco-2 culture system, the metabolic stability 
screening using microsomes or hepatocytes, and the P450 
inhibition  assay, have enabled  the  assaying  of  much larger  
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numbers of compounds than those using traditional strategies 
[4]. ADME/Tox properties of molecules can be possibly 
optimized in parallel with assays for potency and selectivity, 
making lead optimization a truly multi-parametric procedure. 

 In addition to the development of experimental assays 
with greater throughput, there is an urgent need for effective 
computational methods for predicting ADME/Tox-related 
properties. Compared to experimental approaches, these in 
silico methods have advantages: they do not initially require 
the compounds to be synthesized and experimentally tested; 
compound databases can be virtually screened rapidly in a 
high-throughput fashion when the calculations are computa-
tionally efficient. Until now, many computational ap-
proaches have been developed for the ADME/Tox proper-
ties, such as bioavailability, aqueous solubility, intestinal 
absorption, blood-brain barrier penetration, drug-drug inter-
actions, transporter, plasma-protein binding and toxicity [5]. 

 In this review, we will survey the computational methods 
that have been developed for the prediction of drug absorp-
tion, with special focus on three specific properties: intesti-
nal absorption, Caco-2 permeability, and blood-brain barrier 
penetration. Considering that the mechanisms of the passive 
diffusion through different biological barriers are quite simi-
lar and the major difference may be the extent, the discus-
sion is based on the important physicochemical determinants 
in drug absorption and not the specific properties. Further-
more, since the prediction of drug absorption is a very active 
and rapidly developed research area, and substantial progress 
has been made in recent years, resulting in a broad spectrum 
of models for estimation of drug absorption, we only empha-
size the new developments in this field. 

1. ADSORPTION AND IN VIVO BARRIERS 

 Oral administration is the most convenient way for pa-
tients to receive medication. When the drug is administrated 
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orally, it has to be absorbed across the epithelium of the 
small intestine. The intestinal adsorption of a drug molecule 
includes two stages: dissolution and membrane transfer. In 
the first stage, the drug molecule is dissolved in the aqueous 
contents of the gastrointestinal tract. The dissolved molecule 
is then transferred across the actual barrier of the gastrointes-
tinal tract to reach the blood circulation. In addition to the 
gastrointestinal tract, there are other several in vivo barriers 
of high interests, such as the blood–brain barrier (BBB) and 
the stratum corneum of the skin. The compositions of all in 
vivo barriers are similar and involve the crossing of biologi-
cal membranes. Biological membranes are composed of a 
lipid-bilayer that results from the orientation of the lipids 
(phospholipids, glycolipids and cholesterol) in the aqueous 
medium. A wide variety of proteins such as selective ion 
channels (Na+, K+, Ca2+ and Cl-) are embedded within the 
membrane. Tight junctions between cells which occur as a 
result of the interaction of membrane proteins at the contact 
surface between single cells generate a regulated barrier with 
small aqueous-filled pores. The dimensions of these pores 
are estimated to be in the range of 8-20 , depending on the 
cell type [6]. 

 The major route for the drug permeability through the 
barrier is passive diffusion that is driven by a concentration 
gradient. Two types of passive diffusion mechanism can be 
distinguished: paracelluar transport and transcelluar trans-
port. For hydrophobic molecules with weight molecule 
smaller than 200, the paracelluar transport between the cell 
junctions is favorable. Liphophilic molecules preferably use 
the transcelluar transport. For both intestinal epithelium and 
the blood brain barrier, the transcelluar transport is more 
important and the prediction of drug absorption and perme-
ability concentrates on this pathway. In addition to passive 
diffusion, some molecules, such as amino acid and glucose, 
can be actively transported by specific transporters, such as 
peptide transporter PepT1, P-glycoprotein (P-gp), and 
multidrug resistance–associated protein 2 (MRP2) [7]. PepT1 
has been classified as a low-affinity high-capacity transporter 
belonging to the proton oligopeptide transporter (POT) su-
perfamily, which can enhance the transcellular permeability of 
many peptide-like molecules from the apical to basolateral 
direction, such as -lactam antibiotics, ACE inhibitors, the 
antineoplastic agent bestatin, and so on. Adversely, some 
efflux proteins localized in the apical or basolateral cell 
membranes have the potential to pump drugs out from the cell 
into the apical or basolateral extracellular fluids. A 
well-studied example of the efflux proteins is P-gp. A por-
tion of the P-gp substrate, such as vinblastine, entering the 
intestinal muscosal cells via passive diffusion, is transported 
out of the cell and into the intestinal lumen by P-gp. In ex-
periment, the intestinal absorption is usually measured by 
fraction absorption, %FA, which is defined by the total mass 
absorbed ( m( ) ) divided by the given dose of the drug 
(dose): 

%FA =
m( )

dose
         (1) 

 For accurate and effective prediction of intestinal absorp-
tion, several in vitro methods have been developed. Among 
them, the most popular cell-based model for intestinal per-
meability is the Caco-2 cell system [8,9]. Caco-2 cells, de-
rived from colorectal carcinoma cells, display many of the 

morphological and functional properties of the in vivo intes-
tinal epithelial cell barrier. Extensive studies have shown 
that human oral drug absorption and Caco-2 permeability 
coefficient have a good sigmoidal relationship [10], sug-
gesting that the human absorption can be well predicted by 
this in vitro model. Caco-2 culture models have many ad-
vantages. First of all, it measures the transport of the drug 
across a cell membrane, rather than an interaction of the drug 
with the lipid bilayer. Secondly, it can measure the parallel 
transport routes, both passive and active. However, it has 
several limitations, such as long preparation time, very slow 
absorption times compared to human intestine and large in-
terlaboratory differences in quantitative results. Furthermore, 
it cannot quantitatively predict the level of active drug 
transport in vivo [11]. The transport across the Caco-2 cell is 
measured by the apparent permeability coefficient (Papp), 
which is calculated as the steady-state appearance rate of the 
compound on the receiver side, divided by the initial con-
centration on the donor side and the surface area of the mon-
olayer: 

Papp =
amount transported

area initial concentation time
     (2) 

 Another interesting epithelial barrier is that separating the 
brain and central nervous system (CNS) from the blood 
stream, called blood brain barrier (BBB). In the case of ef-
fective CNS acting drugs, the knowledge of the penetration 
of drugs through BBB is critical to screen potential therapeu-
tic agent and improve the side effect profile of drugs with 
peripheral activity. The extent to which drug molecules 
across from the blood into the brain is governed by two 
physiologically and anatomically related systems, BBB and 
the blood-cerebral spinal fluid (CSF) barrier, which forms 
two pathways through which drug compounds partition be-
tween plasma and brain tissue. At the molecular level, the 
principal component of the barrier is the lipid bilayer of the 
capillary endothelial cell membrane, through which com-
pounds diffuse to reach the brain. The membranes involved 
are tight junction membranes of brain parechymal cells. 
Tight junction membranes limit the size of hydrophilic 
molecules that can across the membrane by paracellular dif-
fusion. Similar to the permeability across the intestinal epi-
thelium, the vast majority of substances that penetrate a tight 
junction barrier are lipophilic molecules that cross by a tran-
scellular route. Experimental data has shown that lipophilic 
compounds, along with water and small polar molecules, can 
cross both the blood-brain and blood-CSF barriers. Hydro-
philic organic molecules, including plasma proteins and 
larger polar molecules, cannot penetrate well. The relative 
affinity for the blood or brain tissue can be expressed in 
terms of the blood-brain partition coefficient, logBB, the 
partition between the equilibrium concentrations of the drug 
in the brain (Cbrain) and the blood (Cblood): 

logBB =
C brain

C blood

         (3) 

2. PREDICTION MODEL OF DRUG ABSORPTION 
AND PERMEABILITY 

 (a). The rules to define “drug-like” molecules. Rather 
than trying to predict specific absorption-related quantities, 
researchers have tried to find general principles to distin-
guish drug-like from non-drug-like molecules by analyzing 
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databases of drugs and non-drugs. Generally, these rules 
obtained from database analysis can be used to distinguish 
well-absorbed molecules from poorly-absorbed molecules. 
The most popular ADME-concerned filters may be “rule of 
5” proposed by Lipinski and coworkers in 1997 from analy-
sis of 2245 drugs from the World Drug Index (WDI) [12]. 
They found that poor absorption and permeation are more 
likely to occur when 

(1) molecular weight > 500 

(2) calculated logP > 5 (CLOGP) or > 4.15 (MLOGP) 

(3) number of hydrogen-bond donors (OH and NH 
groups) > 5 

(4) number of hydrogen-bond acceptors (N and O atoms) 
> 10 

 The fast estimations of logP allow the “rule of 5” 
screening of library prior to enumeration. Moreover, based 
on screening results from Merck and Pfizer, Lipinski argues 
that it is much easier to optimize pharmacokinetic properties 
early in the process of drug discovery, and attempt to opti-
mize the receptor binding affinity at a later stage. 

 Following the work of Lipinski, other researchers pro-
posed some similar drug-like rules. By analyzing the Com-
prehensive Medicinal Chemistry (CMC) database with 7183 
compounds, Ghost and coworkers found the distributions of 
several important molecular properties (covering more than 
80% of the compounds) [13]: 

(1) –0.4  calculated logP (ALOGP)  5.6 (average 
value: 2.52) 

(2) 160  molecular weight  480 (average value: 357) 

(3) 40  molar refractivity 130 (average value: 97) 

(4) 20 total number of atoms 70 (average value: 48). 

 Opera examined the property distribution in several da-
tabases containing drug-like and non-drug-like compounds 
[14]. The examined properties include molecular weight 
(MW), the calculated octanol/water partition coefficient 
(CLOGP), the number of rotatable (RTB) and rigid bonds 
(RGB), the number of rings (RNG), and the number of hy-
drogen bond donors (HDO) and acceptors (HAC). Skewed 
distributions can be exploited to focus on the ‘drug-like 
space’: 62.68% of “non-drug-like” compounds have 0  
RNG  2, and RGB  17, while 28.88% of ‘non-drug-like’ 
compounds have 3 RNG  13, and 18  RGB  56. By 
contrast, 61.22% of “drug-like” compounds have RNG  3, 
and RGB  18, and only 24.73% “drug-like” compounds 
have 0  RNG  2 rings, and RGB  17. The author con-
cludes that the probability of identifying “drug-like” struc-
tures increases with molecular complexity. 

 Wenlock and coworkers analyzed 594 compounds from 
Physicians Desk Reference 1999 (PDR) and obtained limited 
distributions of molecular weight, lipophilicity, and hydro-
gen bonding for oral drugs (covering more than 90% of the 
compounds) [15]. The distributions are generally consistent 
with ‘rule-of-five’, but more stringent: 

(1) molecular weight < 473 

(2) calculated logP (ACD logP) < 5 or calculated logD7.4 

(ACD logD) < 4.3 

(3) number of hydrogen-bond donors < 4 

(4) number of hydrogen-bond acceptors < 7 

 After analysis of the difference between current devel-
opment oral drugs and marketed oral drugs, Wenlock et al. 
found that the mean molecular weight of orally administered 
drugs in development decreases on passing through each of 
the different clinical phases and gradually converges toward 
the mean molecular weight of marketed oral drugs. Mean-
while, the most lipophilic compounds are being discontinued 
from development 

 Recently, Vieth and coworkers analyzed 1193 “oral” 
drugs and found that the oral drug molecules show property 
distributions essentially identical to those of the set of 594 
oral drugs examined by Wenlock, with minor differences in 
the distribution for the 90th percentiles for hydrogen-bond 
donors and acceptors [16]. Furthermore, the authors found 
that with respect to other routes of administration, oral drugs 
tend to be lighter and have fewer H-bond donors, acceptors, 
and rotatable bonds than drugs with other routes of admini-
stration. 

 However, “rule of five” and other general rules are only 
the minimum criterion of a molecule to be drug-like. It is 
very easy for a compound to fall within the “rule of five” but 
has no potential to lead to a drug. As a matter of fact, 68.7% 
compounds in ACD (Available Chemical Directory) 
Screening Database (2.4 million compounds) and 55 % 
compounds in ACD (240 thousand compounds) have no 
violation of “rule of five” at all. Therefore, more stringent 
criteria should be built up to discriminate drug-like com-
pounds from the others. 

 (b). The prediction models of drug absorption. Cer-
tainly, the rules to predict “drug-likeness” are too general, 
and it is necessary to develop prediction models for specific 
absorption properties. The predictions of the AMDE proper-
ties are involved in two aspects of modeling methods: data 
modeling and molecular modeling. For molecular modeling, 
molecular mechanics, pharmacophore modeling, molecular 
docking, and quantum mechanics are used to explore the 
potential interactions between the small molecules under 
consideration and proteins known to be involved in ADME 
processes, such as cytochrome P450s [17]. For data model-
ing, quantitative structure-property relationship (QSPR) ap-
proaches are typically applied. Based on appropriate de-
scriptors, QSPR exploiting from simple multiple linear re-
gression (MLR) to modern multivariate analysis techniques 
or machine-leaning methods are now being applied to the 
analysis of ADME data. Most prediction methods applied in 
the estimation of drug absorption belong to the category of 
data modeling. Data modeling can be applied with great effi-
ciency to large number of molecules, but require a signifi-
cant quantity of high quality data to deduce a relationship 
between the structures and the modeled property. 

 The reported prediction models for intestinal absorption, 
Caco-2 permeability and blood-brain partitioning are listed 
in Table 1 [18-40], Table 2 [24,27,41-51] and Table 3 
[24,27,45,52-76]. The prediction models can be divided into 
two categories: correlation models and classification models. 
The important methods involved are briefly introduced as 
follows: 
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Table 1. The prediction Models for Intestinal Absorption 

 

Reference Method Model Descriptors Dataset Performance 

    Training 

set 

Prediction 

set 

Correlation or 

classification 

Prediction 

Palm [18] Nonlinear 
regression 

Correlation PSA and other several calculated 
descriptors 

20   r2=0.94  

Wessel [19] GA and ANN Correlation 162 calculated molecular descrip-
tors  

76 10 RMSE=9.5, 
MAE=6.7 

RMSE=16.0, 
MAE=11.0 

Ghuloum 
[20] 

ANN Correlation Molecular hashkeys 20  r=0.83  

Clark [21] MLR Correlation PSA 20 74 r2=0.94 68/74 cor-
rectly classi-
fied 

Norinder [22] PLS Correlation MolSurf parameters 13 7 r2=0.90, 
q2=0.69 

RMSE=0.49 

Raevsky [23] MLR and 
nonlinear fit 

Correlation 4 H-bond descriptors and other 
several molecular descriptors 

32  r=0.94  

Österberg 
[24] 

PLS Correlation 3 H-Bond descriptors and logP 20  r2=0.81, 
q2=0.73  

 

Egan [25] Classification Classification PSA and AlogP98 199 
(well-abso
rbed)+ 

35 
(poorly-ab
sorbed) 

 Good classifi-
cation 

 

Zhao [26] MLR Correlation Abraham descriptors 38 131 r2=0.83, 
RMSE=14 

RMSE =14 

Norinder [27] PLS Correlation Electrotopological state indices and 
some other calculated molecular 
descriptors 

13 7 r2=0.93, 
q2=0.86, 

RMSE=0.44 

RMSE=0.55 

Agatono-
vic-Kustrin 
[28] 

GA and ANN Correlation 57 calculated molecular descriptors 66 (train-
ing set) + 

10 (test 
set) 

10 RMSE=0.59 
(training set), 
RMSE=0.90 
(test set) 

R2=0.80, 
RMSE=0.42 

Klopman 
[29] 

MLR Correlation 37 molecular groups 417 50 r2=0.79 R2=0.79 

Abraham [30] MLR Correlation Abraham descriptors 127  r2=0.80  

Deretcy [31] Nonlinear fit Correlation Multiple calculated molecular de-
scriptors 

93 31 r2=0.80, 
RMSE=14 

RMSE=12 

Zmuidi-
navicius [32] 

Recursive 
partitioning 
analyses 

Classification Multiple calculated molecular de-
scriptors 

> 1000  5% 
false-positives 
and 3% 
false-negatives 

 

Niwa [33] General Re-
gression 
neural net-
work 
(GRNN) and 
Probabilistic 
Neural Net-
work (PNN)  

Correlation + 

Classification 

PSA, ClogP, CMR and some topo-
logical descriptors 

67 (train-
ing set) + 

9 (test set) 

10  GRNN: 
RMSE=6.5 
(training set), 
RMSE=27.7 
(test set) 

PNN: 100% 
correctly clas-
sified (training 
set), 88.9% 
correctly clas-
sified (test set) 

GRNN: 
RMSE = 22.8 

PNN: 80% 
correctly 
classified 

Perez [34] LDA Classification TOPS-MODE descriptors 

 

82 127(set1) 
+ 

109(set2) 

89.0 % cor-
rectly classified 

88.9 % and 
93.6% cor-
rectly classi-
fied for set1 
and set2 
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• Multiple linear regression (MLR): MLR is the most 
widely-used linear correlation method, which can 
model the relationship between two or more explana-
tory variables (X) and a response variable (Y) by fit-
ting a linear equation to the observed data. As a gen-
eral rule, the samples (N) should be larger than 2m (m 
is the number of descriptors used in correlation). As 
the number of descriptors increase, however, MLR 
becomes problematic, for example, redundancy of 
information when descriptors are correlated. 

• Partial least square (PLS): PLS combines features 
from principal component analysis (PCA) and MLR, 
which is based on linear transformation from a large 
number of original descriptors to a new variable space 
based on small number of orthogonal factors (latent 
variables). It is especially useful in quite common 
cases where the number of descriptors (X) is compa-
rable to or greater than the number of compounds 
(samples) and/or there exist other factors leading to 
correlations between variables. 

• Linear discriminant analysis (LDA): LDA calcu-
lates discriminant functions or hyperplanes that parti-
tion the space of chemical descriptors to give the best 
separation between different classes. When the dis-
criminating function is parameterized, it has to be 

tested either by using an independent set of test data, 
or by performing cross-validation. 

• Artificial neural networks (ANNs): ANNs are a 
class of machine leaning methods inspired by the way 
of biological nervous systems, such as the brain, to 
process information. ANNs are typically used when 
there are a large number of observations (X) and 
when the problem is not understood well enough to 
write a procedural program or expert system. Using 
ANNs, the solution to the problem can be sought as 
follows: an answer is calculated by multiplying each 
input by the connection weight; products are summed 
at each hidden unit; and the output of each hidden 
unit is then multiplied by the connection weight, 
summed, and then interpreted. ANNs are very pow-
erful in dealing with non-linear correlation or classi-
fication. The network although can overfit or memo-
rize the data if too many hidden units are used. A suf-
ficiently large test set is necessary to supervise the 
training of the ANNs models. 

• Genetic algorithms (GAs): GAs are a class of heu-
ristic optimization algorithms inspired by the mecha-
nism of biological evolution. In GAs, a group of indi-
viduals with the predicted property (Y) and a set of 
descriptors (X) represent ‘chromosome’ for the 

(Table 1) contd….. 

Reference Method Model Descriptors Dataset Performance 

    Training 

set 

Prediction 

set 

Correlation or 

classification 

Prediction 

Wegner [35] GA based on 
Shannon 
Entropy 
Cliques 
(GA-SEC) 

Correlation 

classfication 

3387 calculated molecular descrip-
tors 

172 24   

Sun [36] PLS-discrimi
nant analysis 
(PLS-DA) 

Classification Atom types 169  167/169 cor-
rectly classified 

 

Xue [37] Recursive 
feature 
elimination 
(RFE) and 
support vec-
tor machine 
(SVM) 

Classification 159 molecular descriptors 131 
(well-abso
rbed) + 65 
(poorly-ab
sorbed) 

 SVM: 83.4% 
correctly clas-
sified for 
well-absorbed 
molecules and 
63.2% for 
poorly-absorbe
d molecules, 

SMV+RFE: 
90.0 % for 
well-absorbed 
molecules and 
80.7% for 
poorly-absorbe
d molecules 

 

Deconinck 
[38] 

Classification 
and regres-
sion trees 
(CART) 

Classification Multiple calculated molecular de-
scriptors 

141  27 138/141 are 
classified cor-
rectly 

23/27 cor-
rectly classi-
fied 

Liu [39] Heurist 
method (HM) 
and SVM 

Correlation Multiple calculated molecular de-
scriptors 

113 56 r2=0.86 r2=0.73 

Jones [40] MLR Correlation ó-Moment Descriptors 38 131 RMSE=12.5 RMSE=15 
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population. The individuals are scored according to 
the fitness score. Then the population is evolved us-
ing three basic evolution operations: selection, cross-
over and mutation. In principle, GAs can be com-
bined with any correlation or classification ap-
proaches, such as MLR, PLS or ANNs. The fitness 
score is estimated using the MLR, PLS or ANNS 
models. QSAR analysis based on GAs can find a 
group of prediction models from a large numbers of 
samples efficiently, rather than one. 

• Support vector machines (SVMs): SVMs are based 
on the structural risk minimization principle (SRM) 
from computational learning theory. SVMs construct 
a hyperplane that separates two classes (this can be 
extended to multiclass problems). Separating the 
classes with a large margin minimizes a bound on the 
expected generalization error. Moreover, SVMs are 
relatively insensitive to variation in the parameters 
and are not prone to overfitting when, for example, 
using high degree polynomial kernels. In many cases 
SVM has been found to be consistently superior to 
other supervised learning methods and less prone to 
overfitting. 

 The prediction models in Table 1, 2 and 3 are organized 
in chronological order with the descriptors and methods used 
and the predictive power of the models. In the following 
section, we only discuss some representative studies of the 
models. The discussions here are only based on the impor-
tant physicochemical descriptors, because most descriptors 
are universally applicable to most permeability process 
through biological barriers. The review may be treated as the 
supplementary material to the reported reviews on the in 
silico predictions of drug absorptions or ADME properties 
[5,7,77-81]. 

3. IMPORTANT PHYSICOCHEMICAL DESCRIP-
TORS 

 It is well known that many factors are related to mem-
brane permeability, including lipophilicity, H-bonding capa-
bility, solute size, and the ionization state of solute. In order 
to consider these factors, many physicochemical descriptors 
are introduced into the prediction of drug absorption. How-
ever, drug absorption may not be determined by a single 
defined descriptor, but rather by the combination of different 
physicochemical characteristics. Moreover, the descriptors 
introduced here are not completely independent, and some of  
 
 

Table 2. The prediction models for Caco-2 permeability 

 

Reference Method Model Descriptors Dataset Performance 

    Training set Test set Correlation or classi-

fication 

Prediction 

Palm [41] MLR Correlation PSA 6  r2=0.99  

van de Water-
Beemd [42] 

MLR Correlation PSA, MW 17  r=0.83  

Norinder [43] PLS Correlation MolSurf parameters 9 8 r2=0.93, q2=0.74 (eq1) 

r2=0.94, q2=0.85 (eq2) 

RMSE=0.45 (eq1) 

RMSE=0.41 (eq2) 

Krarup [44] MLR Correlation Surface-related parameters 11  r2=0.98, q2=0.93  

Segarra [45] PLS Correlation Grid-based descriptors 6  r=0.93  

Cruciani [46] PLS Correlation VolSurf parameters 11  Good  

Österberg [24] PLS Correlation logP and H-bonding pa-
rameters 

11  r2=0.92, q2=0.74  

Norinder [27] PLS Correlation Electrotopological state 
indices and some other 
calculated molecular de-
scriptors 

9 8 r2=0.93, q2=0.79, 

RMSE=0.32 

RMSE=0.51 

Fujiwara [47] ANN Correlation Multiple calculated mo-
lecular descriptors 

87  RMSE=0.51  

Kulkarni [48] MLR Correlation Multiple calculated mo-
lecular descriptors and 
several intermolecular 
interaction descriptors 
based on molecular dy-
namics simulations 

30 8 r2=0.86, q2=0.77 r=0.89 

Ponce [49] MLR Correlation Topological descriptors. 17 20 r=0.96, q=0.93 RMSE=0.52 

Hou [50] MLR Correlation Multiple calculated mo-
lecular descriptor 

77 23 r=0.82, q=0.79 r=0.78 

Nordqvist [51] PLS Correlation Multiple calculated mo-
lecular descriptor 

46 5(set1) + 

125(set2) 

r2=0.79, q2=0.65 Set1: RMSE=0.45 

Set2: 82% cor-
rectly classified 
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Table 3. The Prediction Models of Blood-Brain Partitioning 

 

Reference Method Model Descriptors Dataset Performance 

    Training 

set 

Test set Correlation or 

classification 

Prediction 

Young [52] MLR Correlation logP 6  r2=0.96  

van de Wa-
terbeemd 
[53] 

MLR Correlation PSA 20  r=0.84  

Abraham 
[54] 

MLR Correlation Abraham descriptors 57  r2=0.92  

Lombardo 
[55] 

MLR Correlation Free energy of solvation 55 6 r=0.82  

Norinder 
[56] 

PLS Correlation MolSurf parameters 28 28 (test set1) + 

6 (test set2) 

r2=0.862 

RMSE=0.29 

RMSE=0.35 (test set1) 

RMSE=0.47 (test set2) 

Clark [57] MLR Correlation PSA and MlogP 57 5 (test set1) + 

5 (test set2) 

r=0.82 (n=57) 

r=0.89 (n=55) 

MAE=0.13 (test set1) 

MAE=0.23 (test set2) 

Luco [58] PLS Correlation Multiple calculated 
molecular descriptors 

56 14 (test set1) + 

25 (test set2) 

r=0.92 RMSE=0.24 (test set1) 

RMSE=0.54 (test set2) 

Segarra [45] PLS Correlation Grid-based descriptors 20  r=0.85  

Ajay [59] ANN Classification Multiple calculated 
molecular descriptors 

275  92.0% correctly 
classified for 
the high BBB 
compounds, 
and 71.0% for 
low BBB 
compounds 

 

Crivori [60] PCA and 
discriminant 
PLS 

Classification VolSurf descriptors 110 120  90% correctly classified 
for the high BBB com-
pounds (40 out of 44), 
and about 65% for low 
BBB compounds 

Österberg 
[24] 

PLS Correlation 3 H-bonding descriptors 
and logP 

69 
(Tr1)+ 
45 (Tr2) 

 Tr1: r2=0.76, 
q2=0.75 

Tr2: r2=0.76, 
q2=0.75 

 

Platts [61] MLR Correlation Abraham descriptors 148  r2=0.74, 
q2=0.72 

 

Liu [62] MLR and 
ANN 

Correlation electrotopological state 
indices and several 
calculated molecular 
descriptors 

55 11 r2=0.79 (MLR) 

r2=0.81 (ANN) 

r2=0.84 (MLR) 

 

Kaznessis 
[63] 

MLR Correlation Multiple calculated 
molecular descriptors 

85    

Norinder 
[27] 

PLS Correlation Electrotopological state 
indices and some other 
calculated molecular 
descriptors 

28 31 r2=0.78, 
q2=0.73, 

RMSE=0.35 

RMSE=0.42 

Hou [64] GA Correlation Multiple calculated 
molecular descriptors 

59 14 (test set1) + 

23 (test set2) 

r=0.87 RMSE=0.26 (test set1) 

RMSE=0.55 (test set2)  

Rose [65] MLR Correlation electrotopological state 
indices 

106 20 (test set1) + 

28 (test set2) 

r2=0.66 

q2=0.62 

RMSE=0.36 (test set1) 

27 compounds in test set2 
are correctly classified 

Doniger [66] ANN and 
SVM 

Classification Multiple calculated 
molecular descriptors 

274 

 

50  81.5% correctly classified 
for SMV and 75.7 % 
correctly classified for 
ANN 

Subramanian 
[67] 

G/PLS Correlation 

Classification 

Multiple calculated 
molecular descriptors 

58 39 (test set1) + 

181 (test set2) 

r=0.92 r2=0.62 (test set1) 

> 70 % and 60 % cor-
rectly classified for CNS 
permeable and imperme-
able drugs in the test set 
2. 
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them may have high correlation. For example polar surface 
area is partially correlated to some hydrogen-bonding de-
scriptors. 

 a. Polar surface area (PSA). Polar surface area is de-
fined as the surface area associated with the hydro-
gen-bonding acceptor atoms nitrogen and oxygen and the 
hydrogen atoms bound to these heteroatoms. Sometimes, 
sulfur atoms and hydrogen atoms attached to sulfur may also  
 (be included. In 1992, van de Waterbeemd and Kansy cor-
related the PSA of a series of CNS drugs to logBB firstly 
[53]. Thenceforward, PSA has become the most popular 
parameter for the prediction of molecular transport 
properties. van de Waterbeemd found that a good correlation 
could be obtained using PSA together with the calculated 
molar volume (VM): 

logBB = 0.021 PSA 0.003 VM + 1.643    (4) 

(n=20, r=0.835, s=0.448, F=19.5) 

 Waterbeemd and Kansy also note that the VM term can be 
replaced by non-polar surface area (NPSA) while retaining 
good statistics (r = 0.845). 

 Another pioneering research relating to PSA was that of 
van de Waterbeemd et al. in which a quantitative struc-
ture-absorption relationship was derived for the passage of 
17 compounds across Caco-2 monolayers [42]: 

logPapp = 0.043 PSA + 0.008 MW 5.165    (5) 

(n=17, r=0.833) 

 The method used by van de Waterbeemd et al. to calcu-
late PSA is only based on a single conformation of the 
molecule of interest. By contrast, in 1996, Palm and co-
workers found that excellent correlation could be obtained 
between the dynamic polar van der Waals surface areas 

(Table 3) contd….. 

Reference Method Model Descriptors Dataset Performance 

    Training 

set 

Test set Correlation or 

classification 

Prediction 

Hutter [68] MLR Correlation Quantum chemically 
derived descriptors and 
some other calculated 
molecular descriptors 

90 23 r2=0.87, 
q2=0.84 

 

Hou [69] MLR Correlation Multiple calculated 
molecular descriptors 

72 14 (test set1) + 

23 (test ste2) 

r=0.89 RMSE=0.26 (test set1) 

RMSE=0.46 (test set2) 

Dorronsoro 
[70] 

ANN Correlation Topological parameters 35  r=0.94  

Stanton [71] PLS Correlation Hydrophobic surface 
area parameters and 
some other calculated 
molecular descriptors 

97  r2=0.78  

Winkler [72] Bayesian 
neural nets 

Correlation Multiple calculated 
molecular descriptors 

85 21 r2=0.74 r2=0.65 

Cabrera [73] MLR Correlation TOPS-MODE topo-
logical descriptors 

114 28 r=0.86 MAE=0.33 

Li [74] Logistic 
regression 
(LR), linear 
discriminate 
analysis 
(LDA), k 

nearest 
neighbor 
(KNN), 
C4.5 deci-
sion tree 
(C4.5 DT), 
probabilistic 
neural net-
work 
(PNN), and 
SVM 

Classification 199 calculated molecu-
lar descriptors 

415  71.0 % (LR) 

71.2% (LDA) 

71.2% (C4.5 
DT) 

77.1% (KNN) 

76.5% (PNN) 

83.7% (SVM) 

 

Narayanan 
[75] 

MLR Correlation Electrotopological state 
indices and some other 
molecular descriptors 

88 13 (test set1) + 

15 (test set2) + 

92 (test set3)  

r=0.86, q=0.85  

Yap [76] General 
regression 
neural net-
work 
(GRNN) 

Correlation Multiple calculated 
molecular descriptors 

129 30  r2=0.70, RMSE=0.13 



Prediction of Drug Absorption and Permeability in Drug Discovery Current Medicinal Chemistry,  2006, Vol. 13, No. 22    2661 

(PSAd) and Caco-2 permeabilities (r2=0.99) [41]. Further-
more, using PSAd, Palm and coworkers found that an excel-
lent sigmoidal relationship could be established between 
%FA and PSAd (r2=0.94) for a set of 20 drugs covering a 
wide range of fractional absorption values (%FA) in humans 
[18]. Drugs that are completely absorbed (FA > 90%) had a 
PSAd  60Å2 while drugs that are less than 10% absorbed 
had a PSAd 140 Å2. The dynamic polar surface area is a 
statistical average in which the surface area of each confor-
mation is weighted by its probability to exist. Dynamic sur-
face properties of each compound were calculated consider-
ing all low-energy conformations within 2.5 kcal/mol of the 
global minimum based on Monte Carlo conformational 
search and energy minimizations. 

 The major drawback of PSAd is that it is computationally 
expensive, which makes PSAd inappropriate for database 
screening. Clark compared the performance of PSA and 
PSAd and found that PSA is not very sensitive to the differ-
ent conformation of small organic molecule and can be sim-
ply computed based on a single well-generated 3-D structure 
[21,57]. As suggested by Clark, the criterion for poor ab-
sorption of PSA > 140 Å2 appears to be an efficient and ro-
bust method of computationally screening large numbers of 
compounds prior to synthesis, which is consistent with the 
rules proposed by Palm et al. [18]. 

 Both of PSAd and PSA require the 3-D structures of a 
molecule. Is it possible to develop a procedure to roughly 
estimate the PSA only based on the 2-D topology connection 
information of a molecule? Ertl and coworkers have devel-
oped such a method to generate a topological PSA (TPSA) 
based on 3D PSA values for 43 fragments resulting from 
analysis of 34,810 compounds taken from the WDI database 
[82]. The correlation between PSA and TPSA is very high 
(r2=0.98), while the computation speed is 2-3 orders of mag-
nitude faster. But it should be noted that the basic assump-
tion of TPSA is that all defined atom types expose to solvent. 
This assumption is true for small molecules. But for rela-
tively large and flexible molecules, the conformational de-
pendencies may bury parts of the polar atoms, thus possibly 
resulting in an overestimation of the computed TPSA. 

 Recently, Hou and coworker proposed the concept of 
“high-charged polar atom”. According to the definition, only 
polar atoms with high charge densities belong to 
high-charged polar atoms. The Gasteiger method was used to 
calculate the partial charges, and the PSA surrounding those 
polar atoms with absolute partial charges larger than 0.1 |e| 
was treated as the high-charged polar surface area (HCPSA). 
Compared with PSA, HCPSA obtained a better correlation 
with logBB [69] and logPapp [50]. 

 PSA can of course be combined with other molecular 
descriptors to develop further improved models compared 
with using PSA alone. For example, in an effort to account 
for hydrophobic contributions, Clark introduced logP as an 
additional descriptor [57]: 

log 0.139 0.148 0.152ClogBB PSA P= +     (6) 

(n =55, r2=0.79, s=0.35, F=95.8) 

log 0.131 0.145 0.172M logBB PSA P= +     (7) 

(n =55, r2=0.77, s=0.37, F=86.0) 

 Egan et al. published a model for intestinal absorption 
based on PSA and logP descriptors alone [25]. Extensive 
validation of the model on known orally delivered drugs, 
drug-like molecules, and compounds assayed by Pharma-
copeia, Inc. for Caco-2 cell permeability demonstrated a 
reasonably good rate of successful predictions (74-92%, de-
pending on dataset and criterion). 

 (b). Liphophilicity parameters: According to Fick’s 
first law of diffusion, passive drug transport across a bio-
logical membrane is proportional to the membrane-water 
partition coefficient, assuming that the membrane interior is 
homogenous and that the drug concentration on the receiver 
side is much lower than the concentration on the donor side. 
Since membrane–water partition coefficients are not readily 
available, partition coefficients between water and an or-
ganic solvent such as n-octanol are normally used. True par-
tition coefficient, P, is the easiest liphophilicity parameter 
that can be used in drug absorption because logP can be pre-
cisely computed by using atomic or fragment-addition ap-
proaches. In fact, logP values can only be a first estimate of 
the lipophilicity of a compound in a biological environment. 
Since many organic molecules that have different ionizable 
state in different pH have different logP values. The presence 
of more than one species results in an average partition coef-
ficient: the apparent partition coefficient or distribution coef-
ficient D, which is pH-dependent in case of the existence of 
ionizable compounds. Several investigators have reported a 
correlation between liphophilicity parameters (logP, logD, 

logP) and drug absorption. 

 Krämer compared the experimentally determined logD of 
14 structurally diverse drug and potential drug compounds 
with their apparent Caco-2 permeability coefficient (Papp), 
and with the fraction absorbed in humans after oral admini-
stration [25]. The bell-shaped relationship between logPapp 

and the experimental logD can be observed. logD gave a 
better correlation than both logP of the neutral species or 
logP of the neutral species with a correction for the molar 
fraction of the neutral species. Generally, compounds with 
low logD are poorly absorbed, whereas compounds with log 
D < -1 offer satisfactory absorption. 

 Hou and coworkers compared the correlation between 
Caco-2 permeability and logP and that between Caco-2 per-
meability and logD (Eqs 8 and 9) [50]. A direct fitting of 
logP values with logPeff values of the compounds in the 
training set produced an r value of approximately 0.47. If 
logD was used instead of logP, the correlation coefficient 
was improved to r=0.71. Obviously, for partition processes 
in the body, the distribution coefficient D, for which an 
aqueous buffer at pH=7.4 (blood pH) is used in the experi-
mental determination, often provides a more meaningful 
description of lipophilicity, especially for ionizable com-
pounds. 

log 5.469 0.236logeffP P= +       (8) 

(n=77, r=0.471, s=0.657, F=24.0) 

log 5.265 0.311logeffP D= +       (9) 

(n=77, r=0.708, s=0.536, F=75.2) 

 In equation 9, the experimental logD values were used. In 
the development of a theoretical predictive model, it is cer-
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tainly expected that all variables in a model are theoreti-
cally-derived, so the prediction is experimentally irrespec-
tive. It is interesting to compare the performance of the ex-
perimental and calculated logD values, and thus the authors 
[50] performed a correlation between logPeff and the pre-
dicted logD values on 44 compounds in the training set. If 
the experimental logD was replaced by the predicted logD 
(ACD logD), the correlation was decreased from 0.69 to 
0.51. It is obvious that the performance of the calculated 
logD values was not satisfactory. The deviations caused by 
calculations may be mainly caused by the pKa prediction. 
Several approaches have been developed for pKa predic-
tions, including ACD/pKa (ACD), Pallas/pKa (Compudrug) 
and SPARC [83]. But until now, these methods cannot pro-
vide very reliable prediction for some complicated organic 
molecules. 

 Besides n-octanol/water partition system, other sol-
vent/water partition system is used to gain addition informa-
tion on barrier permeability. Young et al. proposed a correla-
tion between logBB and logP (see equation 10) [52]. logP 
is defined as the difference between the n-octanol/water par-
tition coefficient (logPow) and the cyclohexane/water parti-
tion coefficient (logPcychw). The logP can be treated as a 
measurement of the hydrogen-bonding capability, because, 
unlike cyclohexane, n-octanol permits hydrogen-bonding. 

log 1.889 0.485 logBB P=           (10) 

(n=20, r=0.831, s=0.439, F=40.23) 

 (c). The Abraham descriptors. The simplest way of 
calculating the hydrogen bonding capacity is to count the 
number of hydrogen bond donor and acceptor atoms or to 
count the number of lone pairs of electrons on certain kinds 
of atoms. Certainly, these simplified models are not highly 
accurate descriptions of the hydrogen bonding properties of 
the molecules, but they have in some cases provided reason-
able predictions of membrane permeability. PSA belongs to 
H-bonding descriptor. Österberg and Norinder analyzed the 
relationship between PSA and three H-bonding descriptors 
(number of H-bond nitrogen atoms, number of H-bond oxy-
gen atoms and number of H-bond donor atoms on nitrogen 
and oxygen), and found high linear correlation between the 
hydrogen-bonding descriptors and PSA of five chemically 
diverse sets of drugs (r2 > 0.93, q2 > 0.69) [24]. 

 Abraham and coworkers developed a set of parameters to 
model solvation and H-bonding properties of organic mole-
cules [84]. These solute descriptors are based on the physi-
cally meaningful theoretical cavity model of solute–solvent 
interactions, and widely applied in the prediction of a variety 
of physicochemical and pharmcokinetic properties, such as 
solubility, blood–brain partitioning, skin permeability, and 
human intestinal absorption according to Equation 11: 

logSP = c + rR2 + s 2
H

+ a
2

H

+ b
2

H

+ Vx       (11) 

where SP is a solute property in a given system; R2 repre-
sents excess molar refraction which models dispersion force 
interactions arising from the greater polarizability of - and 
n- electrons; 2

H  represents solute dipolarity/polarizability 

due to solute-solvent interactions between bond dipoles and 

induced dipoles; 
2

H

, hydrogen-bond acidity, relates to 

the strength and number of H-bonds formed by donor groups 
in the solute when they interact with lone pairs of acceptor 

groups in solvent molecules; 
2

H

, hydrogen-bond ba-

sicity, relates to the strength and number of H-bonds formed 
by the lone pairs of acceptor groups in the solute when they 
interact with donor solvents; Vx represents McGowan char-

acteristic molar volume. 2
H , 

2

H

 and 
2

H

 can be 

obtained from partition studies in different biphasic systems 
with known c, r, s, a, b and v factors or, where applicable, 
from gas–liquid chromatography analysis on a polar, non-
acidic stationary phase for 2

H  and highly basic or acidic 

stationary phases for 
2

H

 and 
2

H

, respectively. 

These descriptors can also be calculated from existing data-
bases for the respective molecule fragments. Vx can be cal-
culated from the molecular structure of the solute. 

 The first application of Abraham descriptors in drug ab-
sorption is reported in the prediction of blood-brain parti-
tioning [54]. Using a dataset of 65 drug or drug-like mole-
cules, Abraham and coworkers obtained the following equa-
tion: 

2 2

2 2

log 0.038 0.715 0.698

0.198 0.687 0.995

H H

H

x

BB

R V

=

+ +

      (12) 

(n =57, r2=0.916, s=0.197, F=99.2) 

 It should be noted that Equation 12 was obtained after 
eliminating eight outliers from the training set. Equation 12 
shows exactly the solute factors that govern BB values. From 
this equation, it can be deduced that factors relating to polar-
ity and hydrogen bonding disfavor brain penetration while 
solute size (Vx) appears to promote partitioning into the 
brain. 

 Platts and coworkers reparameterized Equation 12 using 
a large dataset (148 molecules) (Equation 13) [61]: 

logBB = 0.044 + 0.511R2 0.886s 2
H

0.724
2

H

0.666b
2

H

+ 0.861Vx

    (13) 

(n =148, r=0.843, s=0.367, F=71.0) 

 According to prediction using Equation 13, several large 
discrepancies were observed for carboxylic acid containing 
molecules such as salicylic acid and indomethacin, and an 
obvious improvement could be achieved by adding an indi-
cator variable. Equation 13 indicates that size strongly en-
hances brain uptake, whereas polarity/polarizability, H-bond 
acidity, basicity, and the presence of carboxylic acid groups 
strongly reduce brain penetration. 

 Zhao and coworker reported a prediction model based on 
the Abraham descriptors to model the human intestinal ab-
sorption data of 169 drugs [26]. The obtained model pos-
sesses good correlation and external prediction ability. The 
step-wise analysis show that the two dominated descriptors 

are 
H

2
 and 

H

2
. This is in agreement with pre-

vious work that suggests hydrogen-bond donors and hydro-
gen-bond acceptors or polar molecular surface are good de-
scriptors with which to model human intestinal absorption. 
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%FA = 90 + 2.11R2 + 1.70 2
H 20.7

2

H

22.3
2

H

+ 15.0Vx

       (14) 

(n =38, r2=0.83, q2=0.75, s=16%, F=31) 

 (d). Volsurf parameters. Volsurf descriptors, developed 
by Cruciani and coworkers [46], were used to quantitatively 
characterize size, shape, polarity, hydrophobicity and the 
balance between them of organic molecules. The GRID 
forcefield was chosen to calculate energetically favorable 
interactions sites around a molecule, and produce 3D mo-
lecular interaction fields (MIFs). A MIF maps the chemical 
forces between an interacting partner and a target molecule 
onto a 3D grid. The water probe (OH2) was used to simulate 
solvation-desolvation processes, while the hydrophobic 
probe (called DRY in the GRID program) and the carbonyl 
probe (O) were used to simulate drug-membrane interac-
tions. The DRY probe is a specific probe to compute the 
hydrophobic energy; the overall energy of the hydrophobic 
probe is computed at each grid point as Eentropy + ELJ  EHB, 
where Eentropy is the ideal entropic component of the hydro-
phobic effect in an aqueous environment, ELJ the induction 
and dispersion interactions occurring between any pair of 
molecules; and EHB the H-bonding interactions between wa-
ter molecules and polar groups on the target surface. VolSurf 
has the nice advantage of producing 2D descriptors using the 
3D information embedded in any map. Moreover, the Vol-
Surf transformation is easy to be understood, and fast to be 
computed. The descriptors have a clear chemical meaning 
and are lattice independent, and some of them can be pro-
jected back into the original 3D grid map from which they 
were obtained. The VolSurf descriptors show good per-
formance in the prediction of Caco-2 permeability [46] and 
blood-brain partitioning [60]. 

 (e) MolSurf descriptors. Norinder and co-workers also 
analyzed the same set of compounds used by van de Water-
beemd et al. using a quantum chemistry-based approach and 
PLS multivariate data analysis [43]. The authors developed a 
protocol involving both semi-empirical as well as ab initio 
calculations followed by the final computation of molecular 
calculated descriptors by the MolSurf technology. The 
chemical behavior and the calculated descriptors depend on 
the distribution of electrons and energy in the valence region. 
The electrostatic potential, V(r), and the local ionization en-
ergy, I(r), are calculated at points evenly distributed on this 
surface. The computed 13 descriptors describe properties 
such as based strength, hydrophobicity, hydrogen bonding, 
polarity as well as polarizability [22,43,56]. 

 Norinder et al. divided the ‘Waterbeemd data set’ into a 
training set of 9 compounds and a test set of 8 compounds. 
The derived PLS model has good statistical significance and 
good predictivity [43]: 

logPeff PLS model:            (15) 

(n =9, r2=0.935, q2=0.849, s=0.33, F=40.88) 

(rmsetr=0.270, rmste=0.409) 

 From the analysis of the PLS model, the authors found 
that the most important factors influencing the model are 
associated with hydrogen bonding. Thus variables such as 
the number of possible hydrogen donor atoms as well as the 

number of hydrogen bond acceptor nitrogens have the great-
est impact along with the actual strength of the hydrogen 
bond in the latter case. High lipophilicity and the presence of 
surface electrons, i.e. valence electrons, which are not tightly 
bonded to the molecule, were also found to have a favorable 
influence to achieve high Caco-2 monolayer permeability. 

 Norinder et al. used the MolSurf parameters to model the 
brain-blood partitioning of 57 organic molecules [56]. 
Norinder et al. divided the 57 molecules into three parts—a 
training set and two test sets (one compound was excluded). 
The second test set (test set 2), identical to the test set used 
by Lombardo et al. [55], was also used for evaluation of the 
derived PLS statistical models. The derived PLS models 
predicted the brain–blood partitioning of the second test set 
with greater precision (rmse 0.473 and 0.508, respectively) 
than the model reported by Lombardo et al. (rmse 1.244). 
The results from the PLS analyses are summarized as fol-
lows: 

logBB PLS model:            (16) 

(n =28, r2=0.862, q2=0.782, s=0.311, F=49.93) 

(rmsetr=0.288, rmste=0.473) 

 The most important properties influencing the model 
were associated with polarity and Lewis base strength and 
should be kept to a minimum to promote high partitioning. 
The absence of atoms capable of hydrogen bonding interac-
tions as well as high lipophilicity (logP) and the presence of 
polarizable surface electrons, i.e., valence electrons, were 
also found to promote high logBB. 

 Using the same molecular descriptors, Norinder et al. 
developed a prediction model of intestinal absorption based 
on dataset of 20 diverse drug-like molecules [22]. The PLS 
model for the training set of 13 molecules has excellent cor-
relation: 

log(%FA) PLS model:           (17) 

(n =13, r2=0.903, q2=0.685, s=0.628, F=28.05) 

(rmsetr=0.523, rmste=0.488) 

 Properties associated with hydrogen bonding had the 
largest impact on drug absorption. The analyses show that 
the MolSurf parameters have high correlation with the polar 
surface area (PSA), which can be indicated by the high cor-
relation coefficient (r2=0.98, q

2=0.93). Although PSA and 
the MolSurf parameters are highly correlated, it is believed 
that the MolSurf descriptors have some advantages than 
PSA. Firstly, the MolSurf descriptors give a more compre-
hensive characterization of the molecule. Moreover, the 
MolSurf descriptors are also easier to be interpreted than 
dynamic polar surface area with respect to structural re-
quirements that are of importance for intestinal absorption. 

 (f). Eletrotopological state index (E-state). The elec-
trotopological state index (E-state) is developed from 
chemical graph theory and uses the chemical graph (hydro-
gen-suppressed skeleton) for generation of atom-level struc-
ture indices. The index is based on the electronic effect of 
each atom on the other atoms in the molecule as modified by 
molecular topology. Each atom has an assigned intrinsic 
state value Ii calculated as follows: 

I i = ((2/N i )2 i

v
+ 1) / i            (18) 
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where N is the principal quantum number of the atom i, v 
the number or valence electrons in the skeleton (Zv-h), and  
the number of s electrons in the skeleton (s-h). For a skeleton 
atom, Zv is the number of valence electrons, s the number of 
electrons in s orbitals, and h the number of bounded hydro-
gen atoms. The E-state S(Ai) for the atom is the modified 
intrinsic value: 

S(Ai ) = I i + I i   (19) 

where Ii quantifies the perturbing effect on the intrinsic 
atom value. This perturbation is assumed to be a function of 
the difference in the intrinsic values Ii and Ij: 

I i = (I i I j ) /rij
2

j =1

N

           (20) 

where rij is the number of atoms in the shortest path between 
atoms i and j including both i and j. The difference in intrin-
sic values, Ii, for a pair of skeletal atoms encodes both elec-
tronic and topological attributes that arise from electronega-
tivity differences and skeletal connectivity. Derived from 
this electronegativity difference, the E-state value for an 
atom is related but not limited to the concept of atomic par-
tial charge. In addition to an atom-level E-State value com-
puted for each atom, an atom-type formalism has been de-
veloped. The atom type E-State index is defined as the sum 
of the individual atom level E-State values for a particular 
atom type. 

 Rose and Hall have developed a QSPR model to predict 
logBB based on a training set of 86 compounds and a test set 
of 20 molecules [65]. The model based on three variables 
yielded statistical information as follow: 

logBB = 0.202HST (HBd) + 0.00627[HST (arom)]2

              0.105[d 2 v ]2- 0.425
      (21) 

(n =102, r2=0.66, q2=0.62, s=0.45, F=62.4) 

where HST(HBd) represents the sum of the hydrogen E-State 
values for groups that act as hydrogen bond donors. The 
negative coefficient on HST(HBd) indicates that hydrogen 
bond donor groups lead to negative or low value of logBB. 
The second value in the model is the square of the atom-type 
hydrogen E-State descriptor for aromatic CH groups, 
HST(arom). Because of the positive coefficient on 
HST(arom), larger values are related to larger logBB value. 
The third variable in the model is the square of the sec-
ond-order valence molecular connectivity difference chi in-
dex, d2 v. This variable increases with increased branching 
in the structure. Because of the negative coefficient on d2 v, 
larger values are related to more negative logBB values. 

 Norinder and Österberg developed several PLS models 
for the predictions of Caco-2 cell permeability, human intes-
tinal absorption and blood-brain partitioning using CLOGP, 
CMR (calculated molar refraction) and the electrotopological 
state indices. Good statistical models were derived (r2=932 
and q

2=0.790 for logPapp, r
2=781 and q

2=0.729 for logBB, 
r

2=933 and q
2=0.855 for %HIA) that permit fast computa-

tional screening and prioritization of virtual libraries [27]. 

 (g) Molecular group descriptors. In 2002, Klopman and 
coworkers developed a novel approach to predict human 
intestinal absorption [29]. Quit different from the other mod-
els, the molecular descriptors used in this model is molecular 

groups, not usually used molecular descriptors. The calcu-
lated human intestinal absorption is summed by counting the 
frequencies of the defined groups as the following: 

%FA = C 0 + ciGi

i

           (22) 

where C0 is constant, ci are the correlation coefficients of the 
presence (1) or (0) of a certain group. 

 The method developed by Klopman et al. is based on a 
modified contribution group method in which the basic pa-
rameters are structural descriptors identified by the CASE 
program, together with the number of hydrogen bond donors. 
The search for the basic molecular groups was performed 
using the MCASE program. The prediction model includes 
36 structural groups derived from the chemical structures of 
a data set containing 417 drugs and one H-bond parameter, 
Hdonor, the sum of all OH and NH groups. The model was 
able to predict the percentage of drug absorbed from the gas-
trointestinal tract with an r2

 of 0.79 and a standard deviation 
of 12.32% of the compounds from the training set. The 
standard deviation for an external test set (50 drugs) was 
12.34%. 

 In fact, the atom or group addition methods have been 
widely applied in the prediction of logP and logS (solubility) 
[85,86]. The superiority of this class of approaches is that 
they do not need any descriptors from other theoretical mod-
els. Moreover, what this class of methods needs is to count 
the occurrence of functional groups in a molecule, so they 
are extremely computationally efficient. The shortcoming of 
this approach is also obvious. First, it requires a large data 
set to obtain contribution of each functional group. Second, 
it may suffer from the ‘missing fragment’ problem, which 
means that if a compound contains ‘missing fragment’ which 
can be considered by the group contribution model, its prop-
erties cannot be precisely predicted. Now, the experimental 
data for logPapp, logBB or even %FA are very limited, so it is 
difficult to define many atom types or molecular groups and 
build a reliable addition model. But we believe that along 
with the increase of the experimental data, this class of ap-
proaches will become more important. 

4. RECENT ADVANCES IN PREDICTION OF DRUG 
ABSORPTION 

 (a). The application of support vector machine 

(SVM). In recent years, one of the most exciting advances in 
this area is the introduction of some new statistical and ma-
chine-leaning methods, especially support vector machine 
[37,39,66,74]. SVM is based on the “structural risk minimi-
zation, SRM” principle from statistical learning theory. In 
linearly separable cases, SVM constructs a hyperplane that 
separates two different classes of vectors with a maximum 
margin. In this case, a vector corresponds to a chemical 
agent, and this vector is represented by xi, with structural and 
physicochemical descriptors of the chemical agent as its 
components. This is done by finding another vector w and a 
parameter b that minimizes ||w | |2 and satisfies the following 
conditions: 

w.xi + b 1,         for y i = +1 class 1 (positive samples) 

w.xi + b +1,        for y i = -1 class 2  (negative samples)

 

 

 

    (23) 
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where yi is the class index, w is a vector normal to the hyper-
plane. After the determination of w and b, a given vector xi 
can be classified by: 

sign(w.x + b)             (24) 

 In nonlinearly separable cases, SVM maps the input 
variable into a high-dimensional feature space using a kernel 
function K(xi, xj). An example of a kernel function is the 
Gaussian kernel, which has been extensively used in differ-
ent studies with good results. 

K (xi , x j ) = e
x j xi

2
/2 2

         (25) 

 Linear support vector machine is applied to this feature 
space and then the decision function is given by: 

f (x) = sign( i
0yi K (x, xi ) + b)

i =1

l

          (26) 

where the coefficient 
0
i  and b are determined by maxi-

mizing the following Lagrangian expression 

i

i =1

l
1

2 i j y i y j K (xi , x j )
j =1

l

i =1

l

       (27) 

under the following conditions: 

i 0 and i y i = 0
i =1

l

        (28) 

 Compared with the other correlation or classification 
methods, SVM possesses prominent advantages: (1) strong 
theoretical background provides SVM with high generaliza-
tion capability and can avoid local minima; (2) SVM always 
has a solution, which can be quickly obtained by a standard 
algorithm (quadratic programming); (3) SVM need not de-
termine network topology in advance, which can be auto-
matically obtained when the training process ends; (4) SVM 
builds a result based on a sparse subset of training samples, 
which reduces the workload. 

 Doniger and coworkers applied two different ma-
chine-learning algorithms: artificial neural network and 
support vector machine, to predict the blood–brain barrier 
permeability of 324 drug and drug-like molecules [66]. For 
both the ANN and the SVM, the performance of the algo-
rithm was measured by counting the number of molecules in 
the validation set that were correctly classified. Based on 
over 30 different validation sets, SVM can predict up to 96% 
of the molecules correctly, averaging 81.5% over 30 test 
sets, which comprised of equal numbers of CNS positive and 
negative molecules. This is quite favorable when compared 
with the neural network’s average performance of 75.7% 
with the same 30 test sets. 

 Recently, Li and coworkers have applied some statistical 
leaning methods to construct the classification models to 
distinguish 276 BBB-penetrating (BBB+) and 139 nonpene-
trating (BBB-) agents [74] based on 199 molecular descrip-
tors. The whole dataset was randomly divided into five sub-
sets of approximately equal size for conducting a 5-fold 
cross-validation test of the prediction accuracy of each of the 
statistical learning methods. After training a statistical learn-
ing system with a collection of four subsets, the performance 
of the system was tested against the fifth subset. This process 

was repeated five times so that every subset was used once 
as a testing set. The methods tested include logistic regres-
sion, linear discriminate analysis, k nearest neighbor, C4.5 
decision tree, probabilistic neural network, and support vec-
tor machine. The recursive feature elimination (RFE) method 
was used for the descriptor selections. For all methods stud-
ied here, RFE substantially improves both the BBB- and the 
overall accuracy. Of the statistical learning methods studied, 
SVM gives the highest BBB+, BBB-, Q (the overall predic-
tion accuracy), and C values (Matthews correlation coeffi-
cient) of 88.6%, 75.0%, 83.7%, and 0.645, respectively, by 
using RFE selected descriptors and of 89.9%, 64.3%, 79.1%, 
and 0.524, respectively, by using the full set of descriptors. 
For the other five methods tested in this work, their predic-
tion accuracies for BBB+ agents are in the range of 
78.2~85.5% by using RFE-selected descriptors and 
40.0~83.7% by using the full set of descriptors, and those for 
BBB- agents are in the range of 46.4~62.8% by using 
RFE-selected descriptors and 42.8~58.4% by using the full 
set of descriptors. Thus, SVM appears to give a somewhat 
better prediction accuracy than the other statistical learning 
methods. 

 (b). The development of software system to predict 

drug absorption. Of course, the in silico prediction models 
discussed here are not simply of academic interest – they 
should play a vital role in focusing and accelerate drug dis-
covery. We expect that the algorithms for the accurate pre-
diction of passive permeation characteristics will be devel-
oped and available for routine use by medicinal chemists. So 
besides the development of prediction of higher confidence, 
another challenge is to develop in silico ADME-Tox predic-
tion software system and integrate the existing tools into a 
single, consistent workflow environment. Very encouraging, 
a number of companies traditionally active in the field of 
molecular modeling have also recently began to develop 
software or modules to assist estimate ADME/Tox proper-
ties. At present, many commercial programs are available, 
including VolSurf (tripos, http://www.tripos.com), C2. 
ADME (accelrys, http://www.accelrys.com), and QikProp 
(schrödinger, http://www.schrödinger.com). It should be 
noted that at present the predicted computational models are 
limited to several properties, such as drug solubility, Caco-2 
cell absorption, blood-brain barrier permeation and intestinal 
absorption. For example, in C2.ADME, the predicted prop-
erties include intestinal absorption, blood-brain barrier 
(BBB) penetration, and aqueous solubility at 25°C. In Qik-
Prop, the predicted properties include solubility, blood-brain 
barrier permeability, Caco-2 cell Permeability, MDCK cell 
permeability and skin permeability. Based on these software 
systems and the integrated molecular modeling environment, 
we can perform effect analysis on combinatorial and virtual 
libraries. 

5. THE FUTURE DIRECTIONS 

 Drug absorption is a very difficult process because it 
arises from multiple physiological processes. At present, 
almost all developed models are related to passive diffusion. 
To deal with the biological complexity from which ADME 
properties arise, more experimental data with high quality, 
both in vitro or in vivo, are necessary. As shown in Table 1, 2 
and 3, the largest logBB dataset used in correlation consist of 
about 150 compounds (Zhao’s dataset) [26], and the largest 

http://www.tripos.com
http://www.accelrys.com
http://www.schrdinger.com).Itshouldbe
http://www.schrdinger.com).Itshouldbe
http://www.schrdinger.com).Itshouldbe
http://www.schrdinger.com).Itshouldbe
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logPeff dataset about 110 compounds (Hou’s dataset) [50]. 
Clearly, the small size of these training sets will limit the 
general applicability of any models that are derived from 
them. A representative example is the correlation between 
PSA and drug absorption. Palm found that PSA could be 
well linearly correlated with logPeff of six -adrenoreceptor 
antagonists [41]. But if we used the Hou’s dataset of 77 
compounds, the correlation between PSA and logPeff is not 
very good (r=0.664). It is obvious that the model based on 
PSA cannot be treated as a universal principle to predict 
caco-2 permeabilities [50]. So large dataset gives us oppor-
tunities to develop more reliable prediction models. Also, for 
increased effectiveness, approaches combining models con-
sidering both passive diffusion and active transport should be 
considered, as more data on these become available. 

 As presented in Table 1, 2 and 3, for the same property, 
there are many prediction models. Any single model used for 
in silico prediction of drug absorption may not be completely 
accurate. In fact, a consensus score, a combination of two or 
more models for the same property, based on different prin-
ciples, may enable us to make a sound judgment on the qual-
ity and reliability of the predictions and to explore the source 
of uncertainty of the predictions. Actually, the concept ‘con-
sensus score’ is not new in molecular modeling. In the esti-
mation of the protein-ligand interaction, it has been validate 
that compared with the performances of a single scoring 
function, the hit rates can be effectively improved by using 
the consensus score [87]. But is seems that the concept 
‘consensus score’ is only introduced to the field of ADME 
prediction recently. Hou et al. used eight best models from 
genetic algorithm, instead of a single one, to predict logBB. 
The top model predicted the training set with r=0.87; by av-
eraging its output with the eight best models, the correlation 
coefficient climbs to 0.88. Moreover, the prediction on the 
external test set using the multiple models was improved. 
The authors believed that selection of a single model and the 
discarding of the remaining models might not be the most 
advantageous course, and the outputs of the multiple models 
can be averaged to gain the most reliable results [64]. Re-
cently, researchers in Bio-Rad Laboratories, Inc. has intro-
duced the consensus score to the KnowItAll ADME/Tox 
software system (Bio Rad, http://www.bio-rad.com), and 
found that the benefits of employing multiple complemen-
tary models for the same ADME-Tox endpoint in a consen-
sus modeling approach to provide significantly greater accu-
racy over that of any single model. In this software system, 
two types of consensus model are applied: Real variables 
and Boolean variables [88]. For real variable consensus 
models, a weighted average of the individual models is used. 
A real variable consensus model is trained against a set of 
experimental results. By comparing the actual values to the 
results predicted for each individual model, the software 
system can mathematically compare the models and create a 
weighted average that most closely matches the experimental 
values. The weighted average consensus model can then be 
used to screen large libraries of compounds in batch mode. 
Boolean variable consensus models work with predictors 
that classify compounds into one of two classes, for exam-
ple, BBB+ or BBB-. In the near future, how to integrate 
multiple models and develop reliable consensus model is 
also a very interesting research direction. 
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