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Abstract

Genetic algorithm (GA) combined with random search has been applied to thoroughly search the appropriate associated
sites for both peptide and protein complexes. Steric complementarity and energetic complementarity of ligand with its recep-
tor have been separately considered in our two-stage automated docking. Eight complexes have been randomly selected from
the Protein Data Bank to test our procedure. Conformations and orientations close to the crystallographically determined
structures are obtained. For most cases, the smallest RMS (root mean square of distance) of the GA solutions is smaller than

1.0. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction
Automated docking studies of complex can clarify

the mechanism of molecular recognition, and so al-
low us to design new compounds and estimate their

* Corresponding author.

activities. Furthermore, docking associated with
database screening offers an efficient and practical
way to generate the leading compounds which play an
important role in drug design. The energetic potential
surface of ligand interacting with its receptor is so
complicated that it is impossible to determine the as-
sociated site by carrying out minimization using gra-
dient methods such as the steepest descent method,
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the Gauss—Newton method. These methods fall eas-
ily into the local potential wells and escaping from
them is rather difficult. So some stochastic methods
including the Monte Carlo simulations have been in-
troduced into the studies of molecular recognition,
usually with more complete potential energetic func-
tions in an automatic fashion.

Genetic algorithm, which is regarded as an intelli-
gent stochastic method, was introduced into compu-
tational chemistry in the late 1980s[1,2]. The idea of
genetic algorithm is borrowed from genetics and nat-
ural selection. A population of ‘chromosomes en-
codes solutions to the problem has been first gener-
ated and then it ‘evolves' through a process similar
to biological evolution, including genetic crossover,
genetic mutation and natural selection. The strength
of genetic algorithm lies in its ability to handle large
and diverse set of variables. In 1995, Oshiro et al. [3]
introduced this method into their flexible docking
procedure. Two kinds of GA methods were pro-
posed, which were sphere-based GA method and ex-
plicit-orientation-based method. Both GA methods
aimed to optimize orientations and conformations of
the ligand. The fitness of each ‘chromosomes was
the molecular mechanics interaction energy. The
flexible docking methods had generally produced
structure deviations on the order of 1 A /atom.

Although genetic algorithm can overcome the po-
tential barriers successfully in most cases, it is till
common that GA staggers in local potential wellsin
some special cases, such as automated docking. In
this paper, we combined the genetic algorithm with
random search to explore the possible associated sites
of protein-small molecule, protein—peptide, pro-
tein—protein complexes. We hoped the hybrid method
may overcome the potential barriers more easily.

In our two-stage genetic algorithm minimization,
steric complementarity and energetic complementar-
ity were separately considered to evaluate the fithess
of ‘chromosomes’. The first stage mainly finds the
binding sites and the second one adjusts the orienta-
tions of ligand around the binding site precisely ac-
cording to the interaction energy. Our procedure is
not only effective for enzyme—ligand systems, but
also can optimize the orientations of two domains of
proteins which is too difficult to embody conforma-
tional changes into the GA optimizations. Although
our two-stage docking is not a flexible one, the first

docking stage is a sort of soft-docking because it al-
lows atomic overlapping to some degree. The second
stage belongs to rigid docking and the fitness is the
molecular mechanics interaction energy between
probe molecule and the target molecule.

2. Methods

2.1. Rough searching a set of bound sites based on
steric complementarity

In the first step, the dot surface is generated using
the M S program [4] written by Michagl Connolly. The
parameters used in this program are discussed in next
part. Then, the coordinates of the probe molecule and
the target molecule as well as their surface dot are
centralized. Next, a set of ‘chromosomes is ran-
domly generated and each one contains six variables:
three trandation degrees of freedom and three rota-
tion degrees of freedom. The three rotational vari-
ables are described by three Euler angles. The posi-
tion of the target molecule is fixed and the six vari-
ables define an orientation of the probe molecule. For
each ‘chromosome,” the fitness score is composed of
two parts. the matching score and penalty score of
atomic overlapping.

The matching scoreis calculated thisway: for each
surface dot of probe molecule, the matching property
with target surface dots within a certain distance is
repeatedly tested. The distance usually gets a value of
1.0-2.0 times the sum of radii of two atoms which
hold the two dots. The normal lines of the two over-
lapping dots have a separation angle and if the angle
is smaller than a threshold, say 30°, the two dots can
be assumed * matched’ and the areas shared by the two
dots are added. The total value of those areas is used
to evaluate the matching complementarity.

The next part of the steric complementarity is the
penalty score of atomic overlapping. If the distance
between the two atomsis smaller than athreshold, say
0.8—0.9 times the sum of the Van der Wallas radii of
the two atoms, the two atoms are considered to be
overlapped. The penalty score is evaluated by the
number of the overlapped atomic pairs multiplied by
an empirical parameter. The fitness score in this stage
is the total of the two parts:

Fitness = SCOre, ,cn — CONSt X SCOr€, ey (1)
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where, Score .., IS the matching score and
SCore,, o5 1S the penaty score. ‘const’ is a coeffi-
cient balancing the contributions of the two parts. The
const is mainly determined by the dot density, anim-
portant parameter of the MS program, which is de-
fined as the average dot numbers per angstrom square
area of both probe and target molecules. The const
usually takes 5—20 fold of the dot density.

Random search is easily introduced into genetic
algorithm by replacing the lowest 20—30 ‘chro-
mosomes' in a population with randomly generated
ones. This strategy serves to introduce some new
‘chromosomes’ into the population which helps
maintain the diversity of the population and thus re-
duces the likelihood of the GA converging on a lo-
cal-optimal minimum. This strategy is more useful
than the normal GA which simply increases the mu-
tation ratio to maintain the diversity of the popula-
tion. Another strategy in our two-stage docking is
elitist strategy which copies a set of the best per-
forming ‘chromosomes from one generation un-
changed to the next generation in order to maintain
the best individuals of the previous generation.

The three operations of GA—crossover, mutation
and selection—are then repeatedly performed. If the
crossover probability exceeds a randomly generated
number, the selected pair of ‘chromosomes’ is then
bred using the crossover operator. This operator di-
vides both parents at a randomly selected points and
joins the pieces together to form a pair of new * chro-
mosomes which embody the characteristics of their
parents. The mutation operator is performed when the
mutation ratio is larger than a randomly generated
number. This operator randomly selects a ‘gene’ in

Table 1
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the ‘chromosome’ chain and replaces it with a ran-
domly generated one. The selection operator chooses
the ‘chromosomes’ in a manner according to their
fitness values. The fitter the ‘ chromosome,” the more
chances it is selected. If the average fitness score of
a population is not improved after a certain itera-
tions, say 50 iterations, the convergence is achieved.
In most cases, 2000 iterations are enough to generate
orientations similar to that of crystal structure.

Finally, cluster analysisis performed and the con-
formation with the largest fitness is selected from
each group for further detailed searching. The least
RMS difference between two groups is 3.0 A.

2.2. Detailed searching of the locally associated sites
based on energetic complementarity

In this stage, a more detailed searching is per-
formed for each solution derived from the first stage.
The position of the target molecule is aso fixed and
the six variables define an orientation of the probe
molecule. A set of ‘chromosomes’ is randomly gen-
erated and each one represents an orientation. The
fitness score of each ‘chromosome’ is the interaction
energy between the probe and target molecules. Only
Van der Wallas energy, electrostatic energy and hy-
drogen bond energy are considered. The force field is
AMBER. Non-polar hydrogen atoms are omitted for
simplification and united atom types are introduced in
order to evaluate the interaction energy more pre-
cisely. The purpose of this step is not only to purge
the high energy conformations, but also to precisely
calculate the interaction energy. The procedure of GA
minimization is the same as the previous stage and the

The result of automated docking calculation. For each complex, only the lowest RMS resolution is listed

Complex  PDB brookhaven  Rotation eular angles Tranglation vector (;&) Surface  Interaction RMS
no. code (radian) score energy (kJ/mol)

1 9HVP[6] 0.59 0.00 5.73 11.26 6.88 18.04 3828.64 —2243.80 0.25
2 2WRP[7] 1.99 0.26 4.39 1.26 5.97 —250 2493.94 —268.10 0.02
3 1CGF[8] 2.57 -0.04 3.70 29.44 2.72 2049  2316.45 —1130.80 0.87
4 1CTA[9] 129 -001 4.92 857 7.29 —-179 3135.92 —245.77 0.44
5 1CKA 154 -0.21 4.86 12.76 —-4.10 —336 3188.79 —1118.81 0.00
6 1PLG[10] 2.18 0.02 38 —17.75 11.00 050 133309 —114592 2.75
7 4DFR[11] 3.20 0.01 3.10 —441 12.48 3155 966.25 —749.89 0.64
8 2PTC[12] 0.58 027 —0.76 6.13 2379 —1339 161285 —1050.38 1.00
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Fig. 1. The scatter plot of RMS vs. interaction energy. The solu-
tions of the second stage are classified into severa groups. For each
one, the lowest energy solution is picked out as the representative
solution of this group. Only the five lowest energy representative
solutions are plotted. The general trend is: the lower the interac-
tion energy, the smaller the RMS. = Complex 3, O Complex 1,
X Complex 4.

same convergence criterion is applied. Lastly, cluster
analysis is also performed and the solution with the
largest fitness is selected to calculate the RMS with
the crystal structure.

The difference between the two stages is that the
first stage optimizes the orientations in the whole
tranglational space, in the second stage, the tranda
tional vectors are restrained around the associated site
found from the first stage. The GA optimization usu-
ally achieves convergence much faster than that in the
first stage.

3. Result and discussion

An appropriate selection of the parameters is im-
portant, since they affect not only the total computa-
tional time but also the quality of the solutions. The
parameters of GA optimization include population
size, elite size, random size, crossover ratio, and mu-

tation ratio. Population size is defined as the number
of ‘chromosomes’ in one generation. The larger the
population size, the greater the chances that global
orientation can be found and more time should be
consumed. The €elite size is the number of ‘chro-
mosomes' survived directly into the next generation
in the litist strategy. The random size is the number
of ‘chromosomes’ replaced with new randomly gen-
erated ones in the random search strategy. The €lite
size and the random size are about 5 to 10 percent of
the population size. The population size in our pro-
gram is 100 and the elite sizeis 5. The mutation ratio
and crossover ration are 0.05 and 0.35 in our proce-
dure.

The other two parameters, const and separation
angle, are defined in the previous section. const can
be the balance of the contributions of two parts of the
fitness scorein the first docking stage. It usually takes
5-20 fold of the dot density used in the MS pro-
gram. This parameter can be varied in a relatively
large range without affecting the quality of the last
solutions. The separation angleis usually smaller than
60°. For al the test systems, const is set to 10 fold of
the dot density and separation angle is set to 30°.

There are two parameters concerns with the MS
program which are dot density and the probe radius
of water. The probe radius of water issetto 1.4 A in
our procedure. The dot density is usually set to 0.5
dot number per angstrom sguare area for large sys-
tems and 1.0 for small systems. The larger the pa-
rameter, the more computational time consumed.

Docking based on the steric complementarity aims
to explore the possible binding sites in the whole
tranglational space. Although it is believed that the
fitness of this stage has a poorer relationship with the
RM S than that of the second stage, the docking based
on steric complementarity is necessary because it of-
fers good starting points to perform docking based on
energetic complementarity restrained around the
binding site. Moreover, in some cases, it is difficult

Fig. 2. The fitted structures of (@) HIV-1 protease complexes with A-74707 (9HVP); (b) Trp receptor (2WRP); (c) fibroblast collagenase
(1CGF); (d) Troponin C-site I11-site 11l homdimer (1CTA); () C-CRK complexes with C;G peptide (1CKA); (f) immunoglobulin IGG2A
= KAPPA =) (1PLG); (g) dihydrofol ate reductase complexes with methotrexate (4DFR); (h) beta—trypsin complexes with pancreatic Trypsin
inhibitor (2PTC). Since the two structures cannot be distinguished in the superimposed forms, the fitted structure is moved away from the
crystal structure. For each case, the left picture is the crystal structure and the right one is the fitted structure.
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for docking based on energetic complementarity to
find appropriate orientations by thoroughly searching
the whole translational space, such as HIV-1 pro-
tease, which has relatively small binding site. The
possibility for the probe molecule located in the
binding site without overlapping is small. The soft-
docking based on the steric complementarity is more
likely to find the global orientation than the docking
based on energetic complementarity, because it al-
lows the atomic overlapping to some degree.

Eight complexes randomly selected from the
Brookhaven Protein Data Bank were used to test our
two-stage docking procedure. For each complex,
Table 1 lists the steric complementarity score and in-
teraction energy of the smallest RMS solution. Fig. 1
shows the scatter plot of interaction energy vs. the
RMS for three complexes, which represent the small
system, middle system and large system, respec-
tively. The genera trend is the lower the interaction
energy, the smaller the RMS. Fig. 2 shows the fitted
structure of the lowest RMS conformation and the
crystal structure for every complex. For most cases,
the smallest RMS of the GA solutions is smaller than
1.0 except Complex 6. In the case of Complex 7, the
lowest RMS is 0.64, a litter better than the previous
reported value [3]. For Complex 8, our result is bet-
ter than Jiang and Kim’'s [5] (the lowest RMS they
reported is 2.56). So, we can draw the conclusion that
our automated docking procedure is a successful one
and combined random search with GA can really
overcome the potential barriers efficiently. More-
over, our two-stage automated docking procedure is

a universal one because it is not only suitable for a
small system (e.g., Complex 2), but also for the mid-
die system (e.g., Complex 1) and the large system
(e.g., Complex 3).
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