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Quantitative structure-activity relationships (QSARs) for 35 cinnamamides were studied. By using a genetic
algorithm (GA), a group of multiple regression models with high fitness scores was generated. From the
statistical analyses of the descriptors used in the evolution procedure, the principal features affecting the
anticonvulsant activity were found. The significant descriptors include the partition coefficient, the molar
refraction, the Hammetσ constant of the substituents on the benzene ring, and the formation energy of the
molecules. It could be found that the steric complementarity and the hydrophobic interaction between the
inhibitors and the receptor were very important to the biological activity, while the contribution of the
electronic effect was not so obvious. Moreover, by construction of the spline models for these four principal
descriptors, the effective range for each descriptor was identified.

INTRODUCTION

3,4-(Methylenedioxy)cinnamoyl piperidide with instinctive
anticonvulsant activity, simplified from poperine II, has been
identified as a potential antieplilepsy drug.1 Clinical use
showed that this compound actually had relatively good
therapeutic effectiveness for different epileptic patients and
relatively few untold effects. The basic structure of 3,4-
(methylenedioxy)cinnamoyl piperidide (see Chart 1) is that
of a vinyl group (B region), with a hydrophobic benzene
ring on one end (A region) and an amido group (C region)
on the other. Our previous study showed that the benzene
ring of part A was necessary for the activity. On the benzene
ring, the substitution of 4-chloro groups, 2-chloro groups,
and so on for hydrogen atoms would increase the anticon-
vulsant activity. The presence of the-CHdCH- group in
part B was also important. When the double bond was
saturated or shortened to one carbon atom, the anticonvulsant
activity would be remarkably reduced. In part C, the amides
composed of the amines of relatively small groups, e.g.,
isopropylamine,sec-butylamine, and cycloamylamine, showed
stronger anticonvulsant activity than the others.2

As is well-known, the cinnamamide analogues (Chart 2)
had a wide spectrum of physiological functions,3-5 including
nervous suppression, hypnosis, sedation, anticonvulsion,
muscular relaxation, local anesthesia, mycostate etc. Until
now, however, very few studies on the relationship between
the chemical structures and the biological functions of these
kinds of compounds had been reported. Extensive studies
about the anticonvulsive activity of this group of compounds
have been performed in our laboratory. Early work by us
had established a structure-activity profile only for a small
set of cinnamamide analogues.6 Now, a more profound
correlation study was accomplished after synthesis of many
new compounds. The study was expected to provide insight
into the anticonvulsant mechanisms of the cinnamamides and

give some useful information that could help researchers
design new candidates as potential drugs.

However, from the experimental viewpoint, the mechanism
of the actions of the cinnamamides was not yet properly
understood. In the drug-receptor recognition process, the
electronic, steric, and hydrophobic characters of the mol-
ecules may be important factors affecting the biological
activity. Electronic and steric characters of the molecules
play an important role in the drug-receptor interaction,
because they directly affect the energetic complementarity
and the steric complementarity of interaction molecules at
the active sites. At the same time, hydrophobicity should be
considered because the hydrophobic interactions of drugs in
the biological system are often very significant. So a
correlation study based on a wide variety of molecular
descriptors was expected to provide insight into the anti-
convulsant mechanisms of cinnamamides.

To take full consideration of the effects of electronic,
steric, and hydrophobic features in drug-affecting processes,
a total of 19 descriptors representing these factors was used.
A quantitative structure-activity relationship (QSAR) analy-
sis method based on a GA had been developed in our
laboratory7 and was applied in this QSAR study. The goal
of this study was to develop QSARs for cinnamamides and
determine whether the obtained descriptors can help us
understand the biological activity of the drugs in this* To whom correspondence should be addressed.

Chart 1. Structure of 3,4-(Methylenedioxy)cinnamoyl Piperidide

Chart 2. General Structure of the Cinnamamide Derivatives
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category. On the basis of best QSAR model obtained, we
expected to find more potential compounds with the aid of
the computational combinatorial chemistry method.

MATERIALS

Experimental Data. Thirty-five cinnamamide analogues
were synthesized (see Table 1).8 The chemical structures of
these compounds were all modified from 3,4-(methylene-
dioxy)cinnamoyl piperidide. These compounds were tested
on mice for anticonvulsant activity through maximum
electroshock seizure tests (MES), and the value of ED50 could
be calculated by using the Weil method.8 The potency was
defined as log(1/C) (C represents ED50 ) in the QSAR
analysis and was used as a dependent variable in the QSAR
study (see Table 1).

Calculation of the Molecular Physicochemical Proper-
ties.The molecular geometries of all compounds in Table 1
were modeled using the InsightII molecular simulation
software package.9 The initial structures were first minimized
using molecular mechanics with consistent-valence force
field (CVFF).10 For some relatively flexible structures,
conformational analyses were performed to find their lowest-
energy conformers. Then these structures were fully opti-
mized, and some quantum-chemical features were calculated
based on the semiempirical AM1 method, available in
MOPAC 7.0 on a PC.11 Partition coefficients were measured

by using the method proposed by Hansch.8 The aqueous
desolvation free energy was calculated from the hydration
shell model developed by Hopfinger,12 and the molar
refraction came directly from ref 2.

METHODS

QSARs Based on GAs.Recently, some published papers
suggested that genetic algorithms (GAs) might be useful in
data analysis, especially in the task of reducing the number
of features for regression models.13-15 Rogers and Hopfinger
first applied this method in QSAR analysis15 and proved GA
a very effective tool and had many merits that other methods
did not have. Compared with other traditional statistical
methods, QSARs based on GAs used many models and
tested only the final, fully constructed models. GA-based
QSARs not only could find a group of reliable QSAR models
from a large number of samples but also could construct
higher-order polynomials, splines, and Gaussian models.
Moreover, from the analyses of the variables used in the
evolution procedure, we might obtain the crucial physico-
chemical properties related to the activity.

The QSAR based on the GA analysis program used in
this study was under development in our laboratory and had
been embedded into the Peking University Drug Design
System as a separate module.

The brief basic steps of the QSAR based on a GA are
involved and are as follows.

Table 1. Structures of Cinnamamide Derivativesa and Experimental and Calculated Biological Activities by Eqs 4 and 18

no. R X log(1/C) obsd log(1/C) calcdc residuec log(1/C) calcdd residued

1 3-Cl 0.788 0.510 0.278 0.595 0.193
2 3-F 0.578 0.500 0.078 0.561 0.017
3 4-F 0.458 0.501 -0.043 0.458 0.000
4 4-Br 0.314 0.442 -0.128 0.500 -0.186
5 2,4-Cl 0.664 0.651 0.013 0.623 0.041
6b 3,4-Cl 0.550 0.647 -0.097 0.621 -0.071
7 4-Cl 0.606 0.514 0.092 0.596 0.010
8 4-NO2 0.268 0.324 -0.056 0.314 -0.046
9 3-NO2 0.324 0.323 0.001 0.310 0.014

10b 3-CF3 0.921 0.815 0.106 0.899 0.022
11 2-CF3 0.723 0.797 -0.074 0.899 -0.176
12 4-CF3 0.921 0.819 0.102 0.899 0.022
13 3-OH, 4-OCH3 -0.272 -0.237 -0.035 -0.272 0.000
14 4-OCH3 0.218 0.174 0.044 0.270 -0.052
15 3-I 0.320 0.472 -0.152 0.390 -0.070
16 4-OC2H5 0.500 0.242 0.258 0.360 0.140
17b 4-OC3H7-n 0.290 0.332 -0.042 0.348 -0.058
18 4-OC4H9-n 0.180 0.400 -0.220 0.268 -0.088

19 3-Cl 0.410 0.586 -0.176 0.651 -0.241
20 3-F 0.495 0.573 -0.078 0.366 0.129
21 4-F 0.495 0.574 -0.079 0.561 -0.066
22 4-Br 0.540 0.517 0.023 0.557 -0.017
23b -NHC4H9-i 2,4-Cl2 0.735 0.732 0.003 0.684 0.051
24 3,4-Cl2 0.977 0.718 0.259 0.779 0.198
25 4-Cl 0.714 0.583 0.134 0.653 0.061
26 4-CF3 0.772 0.892 -0.120 0.899 -0.127
27 3-CF3 0.989 0.890 0.099 0.899 0.090

28b 3-Cl 0.620 0.570 0.050 0.600 0.020
29 4-F 0.288 0.562 -0.274 0.366 -0.078
30 4-Br 0.580 0.507 0.073 0.506 0.074
31 -NHC3H7-i 2,4-Cl2 0.600 0.709 -0.109 0.634 -0.034
32 4-Cl 0.801 0.572 0.229 0.603 0.198
33 3,4-Cl2 0.498 0.704 -0.206 0.629 -0.131
34 4-CF3 0.899 0.874 0.025 0.899 0.000
35 3-CF3 0.924 0.875 -0.047 0.899 0.025

a See Chart 2.b These compounds were used as the test set and are not included in the derivation of equations.c The values of log(1/C) were
calculated using eq 4.d The values of log(1/C) were calculated using eq 18.
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a. Creation of the Initial Population. According to the
genetic algorithm, an individual should be represented as a
linear string, which plays the role of the DNA for the
individual. So a series of descriptors are randomly chosen
as a string. Every descriptor is expressed using two digits;
one digit represents its serial number, and the other represents
its function type. The initial population is generated by
randomly selecting some number of descriptors from the
training set. Then these individuals are scored according to
their fitness score. An elite population is used to retain the
best and different individuals.

b. Crossover Operation.Once all models in the popula-
tion have been rated using the fitness score, the crossover
operation is performed repeatedly. In the operation, two good
models are probabilistically selected as “parents” with the
likelihood of being chosen proportional to a model fitness
score; a pair of children are produced by dividing both
parents at a randomly chosen point and then joining the
pieces together.

c. Mutation Operation. After crossover operation, muta-
tion operation may randomly alter all individuals in the new
population, and the new model fitness is determined.

d. Comparison Operation. After the crossover and
mutation operation, the newly created population and the elite
population are compared. If there are some individuals in
the newly created population that are better than some
individuals in the elite population, these better individuals
are copied to the elite population. When the total fitness of
the elite population cannot be improved, “convergence” is
achieved.

e. Partial Reinitialization. A partial reinitialization pro-
cedure is easily introduced into the genetic algorithm by
replacing the lowest 50-80% chromosomes in the population
with randomly generated ones after several steps of crossover
and mutation operations. Thus, the likelihood of the GA
converging on a local-optimal minimum is reduced. Gener-
ally, three to six reinitializations are enough to find all the
different QSAR models.

Upon completion, from the elite population, the models
with the highest fitness scores can be obtained. For a
population of 200 models, if the data set contains 20 features,
500-1000 cycles are usually sufficient to achieve conver-
gence, while 1000-1500 operations are enough when the
data set has 30 features. For a typical data set, this process
takes 10 min to 1 h on a PC(Pentium 150).

Reliability of the Models. The models in the elite
population were sorted by their fitness scores. In this study,
the fitness function was defined as the multiple linear
regression coefficient (r). The reliabilities of the models were
mainly tested with their leave-one-out cross-validated cor-
relation coefficient (Q2) scores and their actual predicted
abilities. Cross-validatedQ2 was defined asQ2 ) (SSY -
PRESS)/SSY, where SSY was the sum of the squared
deviations of the dependent variable values from their mean
and PRESS was the predicted sum of squares obtained from
the leave-one-out cross-validation method. The standard
deviation of prediction (SPRESS) was also considered and
defined asSPRESS) [PRESS/(n - k - 1)]1/2, wherek was
the number of descriptors in the model andn was the number
of compounds in the training date set. In addition, five
compounds, selected from various ranges of anticonvulsant
activity, were kept to test the actual prediction of the models.

RESULTS AND DISCUSSION

Construction of the Linear Polynomial QSAR Models.
The data set contained 35 compounds and 19 molecular
descriptors. The abbreviations for these descriptors are given
in Figure 1. In our models, the five-term and six-term
multiple linear regression models were constructed. More
than six independent variables were not considered because
of the rising possibility of chance correlation. For this data
set, populations with 200 individuals were used, and the
number of elite populations was defined as 100. The genetic
operator was applied until the total fitness score of the elite
populations no longer improved over a period of 30 evolution
operations. Moreover, a partial reinitialization procedure was
applied after 200 crossover operations. The convergence
criterion was met after 1330 operations for 4 descriptors and
1760 operations for 5 descriptors.

After the calculations, the 100 best models for the 5
features and 4 features were obtained, respectively. The top
16 models selected from the 2 elite populations are listed in
Table 3. Because a model could not be properly evaluated
only by its multiple linear regression coefficient, the quality
of the models, as indicated by SD,F, Q2, andSPRESS, was
tested statistically. In eqs 1-16, n was the number of
compounds used in the fit, SD being the standard error of
mean, andF being the overallF statistics for the addition of
each successive term, and the values in parentheses were
the 95% confidence limit of each coefficient.

Generally, for the analysis of MLR, the data must be
reduced to fewer and less correlated variables. The cross-
correlated descriptors would mislead the QSAR model in
uncovering the actual relationship between the biological
activity and these descriptors. The correlation study of these
descriptors in the top 16 models (see Table 2) had been
performed, and eqs 1, 10, 12, 13, and 16 were all proven to
contain 2 or more descriptors that were highly cross-
correlated between each other.

To verify the models, a leave-one-out cross-validation
procedure was carried out to the top 16 equations. Generally
speaking, the leave-one-out cross-validation coefficient
should be greater than 0.75. Considering this criterion, eqs
3, 5, 8, 9, and 11 were unsatisfactory, their predictive abilities
being unacceptable. The statistical properties for the coef-
ficients in eqs 2, 4, 6, 7, 11, and 15, i.e., theF values at the
0.95 confidence level, are summarized in Table 4. Equations
2, 7, 11, and 15 contained at least one insignificant
coefficient, as revealed by the confidence interval andF
statistics. After strict statistical verification, only models 4
and 6 were statistically significant, according to statistical
criteria and predictive ability.

Figure 1. Features used in the QSAR analysis of the data set.
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To verify the actual prediction ability of these two models,
five compounds which did not affect the model calibration
were chosen as an external validation set. Table 4 shows
the actual predictions of these two models for the five tested
compounds. In terms of actual prediction, these two equations
predicted well for the five tested compounds. The predictions
were even better than those of the calibration set. For the
value of SSE (see Table 5), eq 4 was more reliable than the
others. Consequently, eq 4 could be considered to be the
most suitable linear polynomial QSAR model to possess the
best actual prediction ability. The predicted log(1/C) values
for these 35 compounds are listed in Table 1.

Principal Features Determined. In most cases, the
interactions between the molecular features were very
complicated. The interaction between several features might
result in another feature. Moreover, only from a single good
model, we might not grasp the most original factors
influencing biological activity. Information from multiple
models might be more vital than that from a single model.
So observation of the descriptor used in the multiple models

could make it more reliable to uncover the actual vital
descriptors. Figure 2 showed that the variables used changed
along with the evolution procedure in the elite populations.
The figure showed that after convergence, the frequency
appearing in these models the elite population was quite
different from that at the beginning. The frequencies of
MR2,3,4, π, log P, and Hf in the models were much higher
than those of the other descriptors. The descriptor MR2,3,4

was used in more than 80% of the models;π appeared in
about 60% of the models. The next two descriptors, logP
and Hf, respectively, were in about 55% and 40% of the
models. They might be the most important factors affecting
the biological activity. Besides these four factors, the
frequencies of homo,∑σ, lumo, and Dip also seemed
relatively high. The appearance frequencies of the other 11
descriptors were very low in the elite population, so they
might contribute little to the biological activity. From Table
3, it could be found that the top 8 features accounted for
nearly all the features in the top 16 models. The values of
these most important eight descriptors are listed in Table 6.

Table 2. Squared Correlation Matrix for Descriptors Appearing in The Best 16 QSAR Models Used in the Correlation Study

Hf Vm Dip z log P MR2,3,4 ∑σ Fh2o homo lumo density area dipole π

Hf 1.000 -0.183 0.286 -0.102 0.295 -0.068 0.394 0.194 -0.147 0.144 -0.182 0.041 -0.045
Vm 1.000 -0.184 0.189 0.689 -0.236 0.010 0.344 0.054 -0.121 0.981 -0.031 0.199
Dip z 1.000 -0.156 -0.057 0.105 0.243 -0.048 -0.120 0.115 -0.204 -0.002 -0.073
log P 1.000 0.447 0.212 -0.219 -0.235 0.186 0.420 0.252 -0.063 0.955
MR2,3,4 1.000 -0.237 -0.097 0.369 0.115 0.239 0.718-0.143 0.519
∑σ 1.000 0.513 -0.929 -0.789 0.404 -0.245 0.752 0.223
Fh2o 1.000 -0.481 -0.786 -0.027 -0.018 0.724 -0.099
homo 1.000 0.716 -0.379 0.331 -0.707 -0.299
lumo 1.000 -0.161 0.065 -0.792 0.059
density 1.000 -0.175 0.124 0.470
area 1.000 -0.052 0.255
dipole 1.000 -0.008
π 1.000

Table 3. Top 16 QSAR Models Generated by Using Training Data Set

1. log(1/C) ) 1.212+ 0.323 logP - 0.003 Hf- 0.007Vm+ 0.028*Fh2o- 0.014 Dipz
(n ) 30, fitness) 0.862, SD) 0.621,F ) 13.870,Q2 ) 0.588,SPRESS) 0.198)

2. log(1/C)) -0.465+ 0.366 logP - 0.157MR2,3,4- 0.002Hf- 0.004Vm+ 0.023Fh2o
(n ) 30, fitness) 0.862, SD) 0.754,F ) 13.857,Q2 ) 0.599,SPRESS) 0.196)

3. log(1/C) ) 0.212+ 0.319 logP - 0.003area- 0.011Vm- 0.003Hf+ 0.027Fh2o
(n ) 30, fitness) 0.857, SD) 0.813,F ) 13.264,Q2 ) 0.499,SPRESS) 0.219)

4. log(1/C) ) 1.125+ 0.327 logP - 0.003Hf- 0.007Vm+ 0.027Fh2o
(n ) 30, fitness) 0.856, SD) 0.821,F ) 17.095,Q2 ) 0.600,SPRESS) 0.191)

5. log(1/C) ) 0.566+ 0.403 logP -0.330MR2,3,4- 0.088lumo- 0.001Hf+ 0.011Fh2o
(n ) 30, fitness) 0.855, SD) 0.624,F ) 13.024,Q2 ) 0.501,SPRESS) 0.214)

6. log(1/C) ) 0.464+ 0.401 logP - 0.327MR2,3,4- 0.001Hf+ 0.017Fh2o
(n ) 30, fitness) 0.853, SD) 0.689,F ) 16.614,Q2 ) 0.598,SPRESS) 0.192)

7. log(1/C) ) 0.447+ 0.384MR2,3,4+ 0.043π + 0.032Dip- 0.001Hf
(n ) 30, fitness) 0.852, SD) 0.913,F ) 16.580,Q2 ) 0.569,SPRESS) 0.197)

8. log(1/C) ) -0.302- 0.600MR2,3,4+ 0.479π + 0.003area- 0.016Dipz + 0.129density
(n ) 30, fitness) 0.852, SD) 0.724,F ) 12.709,Q2 ) 0.471,SPRESS) 0.225)

9. log(1/C) ) -0.449+ 0.012∑σ -0.381MR2,3,4+ 0.429π + 0.030Dip- 0.001Hf
(n ) 30, fitness) 0.852, SD) 0.834,F ) 12.735,Q2 ) 0.490,SPRESS) 0.221)

10. log(1/C) ) -0.088- 0.587MR2,3,4+ 0.487π + 0.003area- 0.016Dipz
(n ) 30, fitness) 0.851, SD) 0.621,F ) 16.462,Q2 ) 0.543,SPRESS) 0.205)

11. log(1/C) ) -1.693- 0.539MR2,3,4- 0.153homo+ 0.003area+ 0.002Dip
(n ) 30, fitness) 0.851, SD) 0.754,F ) 12.571,Q2 ) 0.484,SPRESS) 0.217)

12. log(1/C) ) -1.858- 0.539MR2,3,4+ 0.443π - 0.170homo+ 0.003area
(n ) 30, fitness) 0.850, SD) 0.921,F ) 16.349,Q2 ) 0.531,SPRESS) 0.207)

13. log(1/C) ) -0.294- 0.587MR2,3,4+ 0.488π + 0.024Dip+ 0.003area
(n ) 30, fitness) 0.850, SD) 0.723,F ) 16.284,Q2 ) 0.529,SPRESS) 0.208)

14. log(1/C) ) -0.688- 0.341MR2,3,4+ 0.402 logP - 0.190lumo- 0.001Hf
(n ) 30, fitness) 0.850, SD) 0.763,F ) 16.259,Q2 ) 0.595,SPRESS) 0.193)

15. log(1/C) ) -3.212- 0.253MR2,3,4- 0.001Hf+ 0.320 logP - 0.305homo
(n ) 30, fitness) 0.850, SD) 0.723,F ) 16.250,Q2 ) 0.596,SPRESS) 0.193)

16. log(1/C)) 0.520+ 0.149∑σ - 0.354MR2,3,4+ 0.397π - 0.001Hf
(n ) 30, fitness) 0.850, SD) 0.604, F) 16.015,Q2 ) 0.548,SPRESS) 0.203)
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Due to the high appearance frequencies of MR2,3,4, π, log
P, and Hf, it seemed that these four variables played strong
roles in the proposed QSAR models. According to the MR2,3,4

definition, which stood for molar refraction of subsitituents
in sites 2, 3, and 4 on the benzene ring, the negative
coefficient of it pointed out that small groups on the benzene
ring contributed to the high biological activity. It was
suggested from Figure 2 thatπ was a necessary contributor

to the anticonvulsant activity, and this variable represented
the partition coefficient affected by the substituents on the
benzene ring. A positive sign of the coefficient for this term
indicated that high hydrophobic substituents on the benzene
ring were very vital to the anticonvulsant activity. So it could
be reasonably presumed that the benzene ring combined with
these substituents on it was composed of a large hydrophobic
core. This hydrophobic group would produce a strong
hydrophobic interaction with the receptor. The negative sign
of MR2,3,4 indicated that when benzene ring interacted with
the receptor through hydrophobic interaction, the steric space
may be relatively small and the existence of the substituents
on the benzene ring would hinder the most adequate
orientation of the inhibitor and the receptor in order to
produce the best hydrophobic interaction. The anticonvulsant
activity could be largely explained by these two descriptors,
MR2,3,4 andπ:

The parameter logP seemed also very important to the
biological activity. But the correlation study showed that log
P was not an independent feature, which was highly cross-
correlated withπ, and the correlation coefficient was 0.955.
That is to say, the change of the value of logP was mainly
caused by the change of the partition coefficient of the
substituents on the benzene ring. From the above analyses,
the property of the substituents on the benzene ring was
critical to the biological activity.

From Figure 2, the formation energy of the molecules
contributed a lot to the biological activity. From Tables 1

Table 4. The 95% Confidence, Level andF Statistics for the
Coefficients of Variables in Eqs 1, 2, 4, 5, and 8-11

eq variable coeff 95% conf F significance

2 logP 0.323 (0.053 36.718 NSa

Hf -0.003 (0.001 24.852
Vm -0.007 (0.002 18.438
Fh2o 0.028 (0.008 13.143
Dip z -0.014 (0.014 0.993

4 logP 0.327 (0.053 37.926
Hf -0.003 (0.001 27.622
Vm -0.007 (0.002 17.617
Fh2o 0.027 (0.008 12.388

6 logP 0.401 (0.060 44.687
MR2,3,4 -0.327 (0.080 16.740
Hf -0.001 (0.001 5.555
Fh2o 0.017 (0.008 4.964

7 MR2,3,4 -0.384 (0.084 21.161 NS
π 0.432 (0.066 42.803 NS
Dip 0.032 (0.022 2.065
Hf -0.001 (0.001 3.639

11 logP 0.402 (0.060 44.247 NS
MR2,3,4 -0.341 (0.080 18.367
lumo -0.190 (0.089 4.499
Hf -0.001 (0.001 3.519

15 logP 0.320 (0.068 21.918 NS
MR2,3,4 -0.253 (0.093 7.390
Hf -0.001 (0.001 2.724
homo -0.305 (0.144 4.484

a Not significant.

Table 5. Actual Prediction (Eqs 4, 6, and 18) for the Five
Compounds

eq 4 eq 6 eq 18

compd log(1/C) expt pred residue pred residue pred residue

6 0.550 0.647 0.097 0.694 0.154 0.621 0.071
10 0.921 0.815 0.106 0.851 0.070 0.899 0.022
17 0.290 0.332 0.042 0.350 0.060 0.348 0.058
23 0.735 0.732 0.003 0.759 0.024 0.684 0.051
28 0.620 0.570 0.050 0.488 0.132 0.600 0.020
SSEa 0.025 0.050 0.012

a Sum of squares error of prediction for five tested compounds.

Figure 2. Change in the descriptor used in the evolution procedure
of the elite population with four descriptors.

Table 6. Top Eight Features Derived from Figure 2

no. π MR2,3,4 log P Hf homo ∑σ lumo Dip

1 0.71 0.80 3.43 -4.329 -9.423 0.37 -0.577 4.112
2 0.14 0.29 2.86 -42.641 -9.422 0.34 -0.597 4.263
3 0.14 0.29 2.86 -43.064 -9.305 0.06 -0.554 2.864
4 0.86 1.09 3.57 6.930-9.364 0.23 -0.656 2.873
5 1.42 1.30 4.14 -7.658 -9.448 0.46 -0.819 3.940
6 1.42 1.30 4.14 -7.047 -9.475 0.60 -0.840 4.160
7 0.71 0.80 3.43 -4.543 -9.347 0.23 -0.603 2.855
8 -0.88 0.94 2.44 28.839-9.763 0.78 -1.875 6.285
9 -0.28 0.94 2.44 29.402-9.705 0.71 -1.726 8.423

10 0.88 0.70 3.60 -148.750 -9.522 0.43 -0.726 5.119
11 0.88 0.70 3.60 -145.368 -9.485 0.54 -0.735 5.494
12 0.88 0.70 3.60 -149.105 -9.558 0.54 -0.884 3.292
13 -0.69 1.17 2.05 -70.834 -8.772 -0.15 -0.383 1.642
14 -0.02 0.99 2.70 -33.821 -8.923 -0.27 -0.287 2.314
15 1.12 1.60 3.84 -19.837 -9.435 0.35 -0.576 4.095
16 0.47 1.45 3.19 -40.318 -8.896 -0.24 -0.274 2.393
17 1.05 1.91 3.77 -46.351 -8.892 -0.25 -0.270 2.487
18 1.55 2.37 4.27 -52.948 -8.894 -0.32 -0.266 2.572
19 0.71 0.80 3.07 -10.960 -9.473 0.37 -0.565 4.334
20 0.14 0.29 3.10 -49.429 -9.472 0.34 -0.584 4.431
21 0.14 0.29 3.10 -49.784 -9.311 0.06 -0.563 3.081
22 0.86 1.09 3.82 0.187-9.379 0.23 -0.652 3.120
23 1.42 1.30 4.38 -14.922 -9.502 0.46 -0.794 4.052
24 1.42 1.30 4.38 -14.324 -9.516 0.60 -0.823 4.301
25 0.71 0.80 3.67 -11.238 -9.361 0.23 -0.603 3.100
26 0.88 0.70 3.84 -156.297 -9.743 0.54 -0.865 3.459
27 0.88 0.70 3.84 -155.987 -9.660 0.43 -0.713 5.364
28 0.71 0.80 3.33 -4.952 -9.480 0.37 -0.569 4.312
29 0.14 0.29 2.76 -43.834 -9.314 0.06 -0.564 3.116
30 0.86 1.09 3.84 6.152-9.383 0.23 -0.655 3.155
31 1.42 1.30 4.04 -9.021 -9.507 0.46 -0.788 4.027
32 0.71 0.80 3.33 -5.262 -9.364 0.23 -0.605 3.135
33 1.42 1.30 4.04 -8.339 -9.523 0.60 -0.825 4.263
34 0.88 0.70 3.50 -150.343 -9.747 0.54 -0.875 3.576
35 0.88 0.70 3.50 -150.086 -9.678 0.43 -0.714 5.111

log(1/C) ) 0.659- 0.461MR2,3,4+ 0.470π
(n ) 30, r ) 0.819,F ) 27.357, SD) 0.651) (17)
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and 6, it could be found that the values of this parameter
were mainly affected by the element constitution of substit-
uents on the benzene ring. For example, for three different
substitutes with F, Cl, or Br atoms respectively, the molecules
with Br atoms on the benzene ring possessed a relatively
smaller formation energy than the other molecules with Cl
or F atoms on the benzene ring. This parameter was
determined by the intrinsic properties of the molecules.

Compared with these four parameters, several other
descriptors with relatively high frequencies contributed a little
to the value of log(1/C). They were not very well-distin-
guished from other parameters in usage. Addition of these
descriptors to eq 17 would cause an improvement of ther
value, but the improvement was not very significant. From
the correlation study, it could be found that the homo, lumo,
and Dip were highly cross-correlated with∑σ, and the
changes of the FMO energy and the dipole were affected by
the electronic properties of the substituents on the benzene
ring. It could be presumed that the effect of the anticonvul-
sant activity ofΣσ would influence the polarization of the
amido carbonyl group through the conjugated effect. High
∑σ would produce a high dipole and, consequently, and
would enhance the dipole-dipole interaction between the
ligands and the receptor. So we could conclude that the
electronic effect would influence the anticonvulsant activity,
but the contribution was relatively small.

Construction of the Linear Spline QSAR Models.To
inspect these important factors more deeply, several descrip-
tors were chosen and linear spline models were constructed.
Through construction of spline models, it was expected that
we would discover whether these features were predictive
only in a limited range of values or not. Four molecular
features, MR2,3,4, π, Hf, and∑σ, were selected for construct-
ing linear spline models. The correlation study had shown
that these four features were not cross-correlated to each
other, which meant they were all independent features and
had their own independent contributions to the anticonvulsant
activity. The splines used here were truncated power splines
and were denoted with angled brackets. For example,〈f(x)
- a〉 was equal to zero if the value off(x) - a was negative;
otherwise, it was equal tof(x) - a. The regression with
splines allowed the incorporation of features that did not have
a linear effect over their entire range. But it was well-known
that when we constructed the spline models, if the variables
selected were truly linear in their biological activity, splines
would not discover any more-predictive models but might
confuse the model building with a chance correlation. So
these models using spline terms must be carefully verified
in order to test their validities.

The five-term models were constructed and evaluated with
their regression coefficient as the fitness score. QSAR
analysis began with a population of 200 random models. The
population was converged after 850 crossover operations.
The best model gained from the elite population is

The statistical result of eq 18 showed that this spline model
seemed much better than the linear regression models in
Table 2. The values ofr, F, Q2, andSPRESSwere all improved
to some extent, compared with those in eqs 1-16. The actual
prediction of this model was verified, the five tested
compounds were predicted by eq 18 (see Table 5 and Figures
3 and 4), and the sum of squares error of prediction was
much smaller than that of eq 4. The high statistical
significance and high predictive ability showed that eq 18
was an excellent model.

From this model, the knot of every parameter could be
obtained and could tell us the information about the range
identifications for these four features. Hf would produce a
negative contribution to the anticonvulsant activity when the
value of Hf is lower than 40.318. A high∑σ was preferred
when it was not higher than 0.23. From Table 6, it could be
found that there were only eight compounds whose electronic
effect of the substituents on the benzene ring would affect
the anticonvulsant activity. A high value ofπ brought on
high anticonvulsant activity, but whenπ was greater than
0.28, the influence would no longer increase with the
increments of theπ values of the substituents on the benzene
ring. When the value ofπ was greater than 0.28, the steric
effect and the electronic effect would influence the anticon-
vulsant activity mainly. A high value of MR2,3,4 was
preferred, as long as the value was below 0.7. An increment
of the molar refraction of the substituents on the benzene

log(1/C) ) 0.899- 0.823〈0.70- MR2,3,4〉 -

0.008〈Hf + 40.318〉 - 1.147〈0.23- ∑σ〉 -

1.792〈-0.28- π〉 (n ) 30, r2 ) 0.820,F )
28.800,Q2 ) 0.744,SPRESS) 0.154) (18)

Figure 3. Comparison of experimental log(1/C) with calculated
log(1/C) obtained from eq 18.

Figure 4. Plot of the actual prediction of eq 18 for five tested
compounds.
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ring was favorable to anticonvulsant activity. This conclusion
was different from that of the linear regression models. Linear
regression models showed that the small substituents on the
benzene ring were more favorable. It was not strange because
the influence of MR2,3,4 was not linearly effective during all
ranges, and when it was treated as a linear polynomial term,
the result could be quite different. When the inhibitor
interacted with its receptor, the steric complementarity was
expected to be optimal. When the volume of some parts of
the inhibitor increased, the contact area between the inhibitor
and the receptor might become larger. However, when the
contact area increased to a certain value, the steric comple-
mentarity would not improve and might even be depressed
by the steric hindrance. So there should exist an optimal value
of MR2,3,4; the value below or above it might produce the
different contributions to the anticonvulsant activity. Both
the linear regression model and the linear spline model were
correct in this issue to some extent, but they expressed
different features of this parameter.

The usage of splines must be careful. If the variables
selected were truly linear in their effect on the biological
activity, splines would not discover any more-predictive
models and might confuse the model building with chance
correlations. For eq 18, based on statistical criteria and the
actual predictive ability for both internal and external sets
of compounds, it had been proven that this model was a
suitable correlation equation. So the results from the linear
spline model may uncover the underlying mechanism of
activity and express the actual relationship between the
anticonvulsant activity and the molecular descriptors.

CONCLUSIONS

In this study, we attempted to correlate the antisultant
activity with a lot of molecular properties. By using a GA,
the linear regression models were constructed. These derived
models were acceptable from the viewpoint of statistical
significance and actual predictive ability. From the analyses

of the descriptors used during the evolution procedure, the
principal features relevant to the biological activity were
identified. Through constructing the linear spline models, the
effective ranges were determined for these four principal
components, including the partition coefficient, molar refrac-
tion, Hammettσ constant of the substituent on the benzene
ring, and the formation energy of the molecules.
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