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A genetic algorithm (GA) combined with a tabu search
(TA) has been applied as a minimization method to rake
the appropriate associated sites for some biomolecular
systems. In our docking procedure, surface complement-
arity and energetic complementarity of a ligand with its
receptor have been considered separately in a two-stage
docking method. The first stage was to find a set of potential
associated sites mainly based on surface complementarity
using a genetic algorithm combined with a tabu search.
This step corresponds with the process of finding the
potential binding sites where pharmacophores will bind.
In the second stage, several hundreds of GA minimization
steps were performed for each associated site derived from
the first stage mainly based on the energetic complement-
arity. After calculations for both of the two stages, we can
offer several solutions of associated sites for every complex.
In this paper, seven biomolecular systems, including five
bound complexes and two unbound complexes, were chosen
from the Protein Data Bank (PDB) to test our method.
The calculated results were very encouraging—the hybrid
minimization algorithm successfully reaches the correct
solutions near the best binded modes for these protein
complexes. The docking results not only predict the bound
complexes very well, but also get a relatively accurate
complexed conformation for unbound systems. For the five
bound complexes, the results show that surface comple-
mentarity is enough to find the precise binding modes, the
top solution from the tabu list generally corresponds to the
correct binding mode. For the two unbound complexes,
due to the conformational changes upon binding, it seems
more difficult to get their correct binding conformations.
The predicted results show that the correct binding mode
also corresponds to a relatively large surface comple-
mentarity score. In these two test cases, the correct solution
can be found in the top several solutions from the tabu
list. For unbound complexes, the interaction energy from
energetic complementarity is very important, it can be
used to filter these solutions from the surface comple-
mentarity. After the evaluation of the energetic
complementarity, the conformations and orientations close
to the crystallographically determined structures are
resolved. In most cases, the smallest root mean square
distance (r.m.s.d.) from the GA combined with TA solutions
is in a relatively small region. Our program of automatic
docking is really a universal one among the procedures
used for the theoretical study of molecular recognition.

© Oxford University Press 639

Keyword: automated docking/genetic algorithm/molecular
recognition/tabu search

Introduction

Molecular docking can fit molecules together in a favorable
configuration to form a complex system. Molecular docking
has been shown to be very effective in the study of protein–
ligand interactions, and the structural information from the
theoretically modeled complex may help us to clarify the
mechanism of molecular recognition, and may even suggest
how the structure of the receptor or ligand may be changed in
order to improve some biological function or for the design
of new compounds.

The computational procedure of docking for protein–protein
and protein–peptide can be classified into three levels by the
degree of approximations (Fragaet al., 1995)—RBD (rigid-
body docking) (Jianget al., 1991), SFD (semi-flexible docking)
(Shoichetet al., 1991) and FD (flexible docking) (Hartet al.,
1992; Lutyet al., 1995). The RBD computation usually uses
the crystal structures of bound complexes to perform docking
calculations, but it is also useful just for bound complexes. It
is difficult to find the appropriate associated sites for unbound
complex systems because this model does not consider the
conformational change during the docking process; however,
it is very common for minor conformational changes to result
when an active molecule associates with its substrate. SD can be
viewed as soft-docking which allows for minor conformational
changes when a receptor binds with its substrate. One successful
method, Fan Jiang’s soft-docking procedure (Jianget al.,
1991), uses a cube representation of the molecular surface and
volume. From this procedure it is possible to design a simple
algorithm for a six-dimensional search and to embody impli-
citly the effects of the conformational changes caused by
complex formation. FD is mainly used in the small active
molecule–protein systems. In the search, the transnational and
rotational degrees of freedom are restricted and some twist
angles of the ligand have been treated as variables in the
energetic function. In the docking method of Lutyet al. (1995),
molecular dynamics is used to evaluate the ligand–receptor
interaction. However, while it is well known that fully con-
sidering the conformational changes near the active site is
very time-consuming, it is still impossible to carry out full
energy minimization at each local position for large complex
systems, such as protein–protein systems.

During the binding process between a receptor and its
substrate, its energetic potential surface is so complicated that
it is impossible to determine the associated site by carrying
out minimization using gradient methods such as the steepest
descent and Gauss–Newton methods. These methods fall into
the local potential wells very easily. Some stochastic methods,
including Monte Carlo simulated annealing, have been intro-
duced into the study of molecular association, usually with a
more complete potential energetic function. We have introduced
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the Simplex method into the minimization procedure and we
found that it could overcome the local minima more easily
than Gradient methods. Combined with a random search,
Simplex methods can offer a good set of answers to some
systems (Wanget al., 1997). Genetic algorithms, which are
regarded as intelligent stochastic methods, were introduced
into computational chemistry in the late 1970s (Michalewicz
et al., 1994). Now genetic algorithms have been used in other
fields of computational chemistry. Oshiroet al. (1995) started
work on docking procedures in 1994. The development of two
kinds of GA method was proposed, which were a sphere-
based GA method and a explicit orientation-based method.
Both of the two GA methods aimed at optimizing orientations
and conformations of the ligand. The fitness of each of
the ‘chromosomes’ was the molecular mechanics interaction
energy. More recently, the tabu (or taboo, TS) (Gloveret al.,
1993) search has begun to attract attention as an effective
heuristic search procedure for combinatorial optimization prob-
lems in the molecular design field. Davidet al. (1997) was
the first to apply this search method to a docking procedure and
proved it was very effective in finding the proper binding mode.

We have compared several heuristic algorithms in a previous
study (Houet al., 1999), which showed that a genetic algorithm
and tabu search were both superior to the Monte Carlo
simulated annealing algorithm. But from a comparison of the
results, we found that these two algorithms did not perform
very effectively in all conditions, in some cases both GA and
TS showed bad results. It is difficult to solve a docking
problem thoroughly when using only a single algorithm.
Although genetic algorithms can overcome the potential
barriers successfully in some cases, it is still common that GA
staggers in local potential wells in most cases. With respect
to the escape from local minima, TS seems more superior than
GA; however, it converges relatively slower, especially near the
best solutions. So according to their merits and shortcomings, a
hybrid algorithm (HA) combining GA with TS was proposed.
The hybrid algorithm was applied to explore the possible
associated sites of protein–peptide and protein–protein com-
plexes. It is expected that the hybrid method may overcome
the potential barriers more easily. In our laboratory, we have
developed different score functions for the following two
stages of conformation searching. In the first stage, surface
complementarity is considered, while in the second stage
only energetic complementarity is considered. From extensive
studies, we found that the steric complementarity was more
important than energetic complementarity, especially for pro-
tein–protein and protein–peptide systems. Moreover, in order
to take account of the conformational flexibility of the ligand
and the protein, two strategies were introduced into our docking
procedure. The first docking stage is a kind of soft-docking,
some degree of surface overlap is tolerated to account for
side-chain flexibility of the proteins. The second docking stage
is a sort of flexible-docking, to some relatively small ligands,
the internal conformational flexibility of the ligands are also
taken into account, some torsion angles of the ligand are
allowed to rotate freely. Using these two strategies, the
conformational changes can be well considered to some extents.
The program is written in C language and run under the Unix,
Dos or Windows operating systems, and our molecular docking
procedure has been embedded into the Peking University
Interaction Computational System (PUICS) as a separate
module. In this study, all ligands were considered as soft bodies,
but their torsion angles cannot be allowed to rotate freely.
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Materials and methods
Genetic algorithm
The idea of a genetic algorithm was borrowed from genetics
and natural selection. A population of ‘chromosomes’ encoding
solutions to the problem is first generated and then it ‘evolves’
through a process similar to biological evolution, including
genetic crossover, genetic mutation and natural selection.
Chromosomes encoding good partial solutions survive, repro-
duce and combine to generate new chromosomes, which
hopefully encode better solutions in the succeeding generations.
Chromosomes with small fitness will gradually perish in the
succeeding generations.

The strength of the genetic algorithm lies in its ability to
handle a large and diverse set of variables. For example,
genetic algorithms have been considered as one of the two
strongest and hopeful methods in conformational analysis
(Fraga et al., 1995) (the other one is molecular dynamics)
which involve a large set of variables (twist angles). The
genetic algorithm has been widely used in computational
chemistry, more detailed introductions can be found in
Michalewiczet al. (1994).
Tabu search
The tabu search was first suggested by Gloveret al. (1993)
and originally applied in the field of operation research.
However, compared with the field of computational chemistry,
it may be a somewhat new algorithm. The basic idea of the
method, described by Gloveret al. (1993), is to explore the
search space of feasible solutions by a sequence of moves,
and, in the mean time, some restrictions will be imposed to
enable a search process to rake otherwise difficult regions.
The real foundation of the tabu search may be sought in
concepts that systematically violate feasibility conditions, as
in heuristic procedures based on surrogate constraints, or even
in cutting plane algorithms.

A tabu search will only remain one current solution during
the course of a search. First, an initial solution is specified or
randomly generated at the start of the iterations, then, some
moves are generated from the current solution. Each of these
moves is evaluated using the evaluation function and they are
ranked in order (the best move at the head of the list). Moves
are considered as tabu if they are not different enough from
those solutions in the tabu list (we will define the criteria to
check whether they are tabu). The best move will be accepted
if it is better than other solutions in the tabu list. So, only
non-tabu solutions will be accepted. If neither of these criteria
can be met, the iteration cycle is terminated. If a new current
solution can be found, it will be added to the tabu list. If the
tabu list is full after several iterations, the current solution will
replace one of the solutions in the tabu list. Usually, the tabu
list will be managed in a ‘first-in, first-out’ manner. When a
new current solution has been identified and stored, additional
moves are generated from it and the search procedure will
continue with a new iteration. After a number of iterations, if
the best solution cannot be changed, ‘convergence’ is achieved,
the tabu search exits and the best solution will be returned.
The restrictions imposed in the tabu search mean that this
algorithm can search relatively large areas after many iterations,
and it has been proven that tabu searches can efficiently find
the global solution to difficult optimization problems.
The hybrid algorithm combined with GA and TS
A comparison of the GA and TS algorithms shows that they
both have their merits and limitations. GA converges faster
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Fig. 1. The flow chart of the hybrid minimization algorithm. The
MAXCYCLE1 represents the number of GA iterations, the MAXCYCLE
represents the maximum number of TS iterations.

when near the best solution, and can find it very quickly, but
GA can fall into local minima relatively more easily. In
contrast with GA, TS can avoid falling into local minima, but
it converges relatively more slowly. As a result, a hybrid
algorithm was proposed. The basic procedure of the hybrid
algorithm is similar to TS, but compared with traditional TS,
it is different with respect to two points. The first modification
is that afterN possible moves from the current solution, some
extra steps of crossover and mutation operations, which come
from GA, are added. The test results showed that this modifica-
tion offered particular advantages over the traditional tabu
search. The second modification is that we use an elite
population to remain several best and different solutions in
the crossover and mutation operations. After 20–30 steps of
crossover operation,N new solutions are ranked, and several
of the best several solutions in the elite population are compared
with the solutions in the tabu list to check if they are tabu; if
they are, then the GA iteration will be performed again. In a
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Fig. 2. The definition of seperation angles. Thet vector is the normal vector
of a surface dot on the target molecule and thep vector is the normal vector
of a surface dot on the probe molecule. Thet vector is an extension line of
the t normal vector. Theθ angle is the separation angle ofp normal vector.
If the separation angle is smaller than a given criterion, say 30–40°, the
surface area of the two dots will be added to the surface score.

Fig. 3. A picture shows that the local area will be used to calculate the
matching complementarity. The center of the ball is a dot of the target
molecule and matching complementarity test is performed only on those
probe dots which are within the ball. P stands for the probe molecule and T
stands for the target molecule. R is usually taken to be a value 1.2–1.5
times that of the sum of the probe atom radius and target atom radius.

traditional tabu search only one current solution remains during
the search, but in the second modification, several solutions
remain, which may help the hybrid algorithm converge faster.
The scheme of the hybrid algorithm is illustrated in Figure 1.
The new hybrid algorithm combines the advantages of both
GA and TS; it not only converges faster, but also does not fall
into local minima easily.

Rough searching potential bound sites based on surface
complementarity
In the first step, the dot surface is generated using the MS
program written by Connolly (1983). The parameters used in
this program are discussed later. Then the coordinates of the
probe molecule and the target molecule as well as their surface
dot are randomly rotated and translated. The surface dot
coordinates have also been synchronistically moved with the
probe and target molecules. Then an initial solution is randomly
generated containing six variables, three translational degrees
of freedom and three rotational degrees of freedom. The three
rotational variables are described by three Euler angles. The
position of the target molecule is fixed and six variables define
the orientation of the probe molecule.

The initial solution is evaluated using surface complementar-
ity. The evaluation score is composed of two parts: the
matching score and penalty score of atomic overlapping. The
matching score is calculated in the following way. For each
surface dot of the probe molecule, the matching property with
target surface dots within a certain distance is repeatedly tested
(Figure 2). The distance usually reaches a value 1.0–2.0 times
the sum of radii of the two atoms which hold the two dots.
The normal lines of the two interesting dots have a separation
angle and if the angle is smaller than a threshold, says 30°,



T.Hou et al.

the two dots can be assumed to be ‘matched’ and the areas
shared by the two dots are added. The total value of those areas
is used to evaluate the matching complementarity (Figure 3).

The next part of the steric complementarity is the penalty
score of atomic overlapping. If the distance between the two
atoms is smaller than a given threshold, say 0.8–0.9 times the
sum of the van der Walls radii of the two atoms, the two
atoms are considered to be overlapped. The penalty score is
evaluated by the number of overlapped atomic pairs multiplied
by an empirical parameter. The evaluation function at this
stage is the total of two parts:

Fitness5 Scorematch – const3 Scoreoverlap (1)

where Scorematchis the matching score and Scoreoverlapis the
penalty score. Const is a coefficient balancing the contributions
of the two parts. Const is mainly determined by the dot density,
an important parameter of the MS program, which is defined
as the average dot numbers per angstrom square area of both
probe and target molecules. Const usually takes a value 5–20-
fold that of the dot density. Then the hybrid algorithm is
performed iteratively, Equation 1 is used to evaluate all
solutions. After convergence, a set of solutions is obtained
from the tabu list. Using the hybrid algorithm, in most cases
we have successfully overcome the tendency of GA to stagger
in the local extreme points. Generally, if we performed 50
steps of crossover and mutation operations for one TS iteration,
50–100 iterations were enough to find the appropriate sites. If
the best several solutions cannot be improved after 10–20 tabu
iterations, ‘convergence’ is achieved. For a typical system
containing more than 1500–3000 atoms, this process takes
between 20 and 30 h on a PC with a Pentium II 350 processor.
Moreover, cluster analysis is not needed in this stage. Because
in the minimization process every solution has been checked
whether it is tabu; the threshold measure used in this paper to
determine the tabu status has a r.m.s.d. of 3 Å or less between
the two solutions being compared. Then, a more detailed
searching will be performed for each conformation at the
next stage.

Detailed searching the local associated sites based on
energetic complementarity

In this stage, a more detailed search is performed for each
solution derived from the first stage. The position of the target
molecule is also fixed and some changeable variables are
defined for the probe molecule. In this stage, only a local
search was performed near these binding sites from the surface
complementarity. Considering the fast convergence of GA near
the best solution, we usually only use GA in the local search.
A set of ‘chromosomes’ are randomly generated and each one
represents an orientation. The fitness score of each ‘chromo-
some’ is the interaction energy between the probe and target
molecules. Only van der Walls energy, electrostatic energy and
hydrogen-bond energy are considered. The force field was
AMBER (Weiner et al., 1984, 1986). Non-polar hydrogen
atoms were omitted for simplification and united atom types
were introduced in order to evaluate the interaction energy
more precisely. Our purpose of this step is mainly to purge
the high-energy conformations after the surface complementar-
ity, and in the mean time to calculate the interaction energy
precisely. When the unbonded interaction energy remains stable
in a user-defined region after 20–30 iterations, ‘convergence’ is
achieved. At this stage, cluster analysis should be performed
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and the solution with the largest fitness is selected to calculate
the r.m.s. with the crystal structure.

At this stage, different systems are treated in different
manners. For protein–protein and some protein–peptide sys-
tems, due to the high flexibility of the ligand, it is very difficult
to consider their conformational change at this stage; so for
relatively large ligands, only three degrees of translation and
three degrees of rotation are considered. For protein–small
molecule systems, a flexible docking procedure is applied, the
internal conformational flexibility of the ligand is taken into
account, and some torsional angles are defined as variables in
the GA minimizations.

The difference between the two stages lies in the fact that
the first one optimizes the orientations in the whole translational
space; however, in the second stage, the translational vector
is restrained near the associated sites derived from the first
stage. The CPU used in this step is only about 5 percent of
that in the first stage.

Result and discussion

Seven complexes randomly selected from the Protein Data
Bank (PDB) have been used to test the hybrid minimization
algorithm and our two-stage soft-docking procedure. All
crystallographic water molecules were eliminated from the
structures. Some missing hydrogen atoms were added to the
complexes using the molecular design software InsightII, with
a neutral sp3 N-terminus and a carboxylic (COOH) C-terminus
assigned at neutral pH. Before the calculations, these structures
were minimized using the AMBER force field to remove any
steric overlap with a restrain of the main chain. Some para-
meters for these seven complex systems are shown in Table I.
Two classes of complex were chosen, including five bound
complexes and two unbound complexes. For these five bound
complexes, we attempted to regenerate the crystal structure,
this part of work is mainly used to test the hybrid minimization
algorithm. The other two unbound complexes were more
realistic, which can be used to test the capability of the
minimization algorithm and docking procedure.

The influence of the parameters
In our docking procedure, so many parameters need to be
carefully calibrated. So before every docking calculation,
these parameters must be properly defined. Some important
parameters and their abbreviations in our docking procedure
are listed in Table II. The parameters can be divided into two
types: four parameters are concerned with surface and energetic
complementarity, the other seven are concerned with the hybrid
minimization algorithm. An appropriate selection of these
parameters is important, since they affect not only the total
computational time but also the quality of the solutions.

For surface complementarity, the two parameters, const and
separation angle, seem to be very critical. Const can be the
balance of the contributions of two parts of the fitness score
in the first stage. It usually takes a value 5–10-fold that of the
dot density used in the MS program. This parameter can be
varied in a relatively large range without affecting the quality
of the last solutions. The separation angle is usually smaller
than 60°. For all test systems in this study, const is set to 5-
fold that of the dot density and the separation angle is set to 30°.

For the hybrid minimization algorithm, some parameters
will greatly affect the calculation results. The parameters of
the hybrid minimization algorithm include tabu size, tabu
threshold measure, tabu iterations, the number of moves
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Table I. Test cases used in our calculations

Molecular names Probe atomsa Target atoms Probe dotsb Target dots

1CTA 272 271 908 915
1CKA 64 479 342 1275
4DFR 1286 1258 2846 2952
2PTC 454 1629 1184 3347
1PLG 1620 1671 3630 3863
2PTCc 454 1629 1184 3347
2KAIc 437 1799 1211 2128

aThe number of probe and target atoms represent only the number of the atoms directly from the protein data bank.
bThe probe radius to generate the Connolly surface is defined as 1.5 Å
cThese two test cases are unbound complexes, the receptor and ligand molecules, respectively, come from different protein molecules.

Table II. Definitions of parameters used in our docking procedure

Parameter abbreviation Parameter meaning Variable range

1. Speration_Angle Separation angle defined in Figure 1 30–40°
2. Overlap_const Coefficient of the total of the overlapping atomic pairs in formula 2. It can balance the contributions of 5–20

two parts of steric complementarity score
3. Dot_Density Number of dots per angstrom square of molecular surface generated by the MS program 0.25–1
4. Probe_Radius Radius of probe atom in the MS program 1.4–2.0
5. Tabu_List The number of remaining solutions in the tabu iteration 10–50
6. Tabu_Thresh_Measure Thresh value used to determine the difference between the present solution with those solutions in the 2–5 Å

tabu list
7. Tabu_Iteration Number of tabu iterations in the calculations 100–500
8. Tabu_Moves Number of moves produced based on the present solution 50–200
9. Elite_Size Elite size of chromosomes 2–10
10. Mutation_ Ratio Ratio of mutation operation 0.05–0.1
11. Crossover_Ratio Ratio of crossover operation 0.30–0.40
12. Select_Ratio Ratio of selection operation 0.80–0.90

(population size), elite size, mutation ratio and crossover ratio.
The tabu size controls how many different solutions should
remain in the tabu list, definition of this parameter by the user
is optional. In general, a 10–20 tabu size is recommended in
our docking procedure. A larger tabu size did not improve the
final solutions by much, but more time was consumed on
solution comparison. In this study, the tabu size for all test
sets were all defined as 20. From our studies, Tabu threshold
measure was a very important parameter, it directly connects
with the efficiency of final solutions, this parameter is used to
determine if the solutions after the GA interruptions are
different enough from those solutions in the tabu list. In this
study, the r.m.s.d. between two conformations was used to
compare two different docked binding modes, and the tabu
threshold measure could vary with specific studied system.
For larger complexes, this parameter can be defined larger,
but for some smaller complexes, this parameter can be smaller.
For example, in systems 1, 2 and 3, the tabu threshold measure
was defined as 2 Å, but in other systems, the tabu threshold
measure was defined as 4 Å. Another parameter, the number
of moves (population size) means that for every tabu iteration,
how many moves are generated based on the current solution.
This parameter also represents the population size in GA
iterations. The larger the number of moves, the greater the
chances that global orientations can be found and the more
time that will be consumed. The elite size is the number of
best solutions directly into the next GA iterations and tabu list
in the elitist strategy. In the calculations, the elite size is about
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5 percent of the number of moves, the number of moves is 50
and the elite size is 2. The mutation ratio and crossover ratio
are defined as 0.05 and 0.35, respectively.
Five bound complexes
The initial five complexes in Table I are bound complexes of
protein–protein and protein–peptide. The crystal structure of
the complexes are directly from the PDB, the components
of each complex were taken apart at an arbitrary relative
orientation, then our docking procedure was used to dock
together and compare the docked complexes with the crystal
structures of the complexes.

In the surface complementarity stage, in order to speed up
the calculations, all hydrogens were omitted. Moreover, for
energetic complementarity and surface complementarity, two
types of reference frames were used. At the surface comple-
mentarity stage, the alternate space axes remained the same as
the initial axes from PDB. But in the energetic complementarity
stage, the alternate space axes were transformed, after trans-
formation, the origin of the coordinate was superposed with
the gravity center of the ligand molecule after the surface
complementarity. The goal of the transformation was to leave
a relatively small rotation vector for the local search stage of
energetic complementarity, thus restraining the movement of
the ligand within a relatively small region. In the second stage,
the translational extents cannot exceed 4 Å. In the energetic
complementarity stage, a cut-off of 12 Å was used to calculate
the van der Waals interaction, another cut-off at 16 Å was
applied in the calculation of the Coulombic interaction.
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Table III. The results of molecular docking calculations for six bounded protein complexes

PDB code Solution Rotational Eular angles (radian) Translational vector (Å) Surface Interaction energy RMS
number score (KJ/mol) (Å)

1CTA 1 103.44 5.34 260.91 –0.69 0.30 0.09 1981.23 – 0.97
22.52 334.23 222.13 0.23 –0.12 0.08 – –345.67 2.37

2 5.34 21.46 249.95 5.28 11.27 –11.97 1672.71 – 13.36
14.34 111.26 12.19 0.34 –1.12 0.37 – –318.76 17.68

3 260.91 328.04 332.50 –4.32 8.16 12.96 1077.53 – 11.35
256.33 335.87 12.09 1.76 1.11 –0.87 – –223.12 10.60

1CKA 1 199.66 12.71 240.85 2.01 –2.48 13.34 895.68 0.56
103.58 350.69 253.01 –0.31 1.08 –0.13 –1468.00 0.61

2 121.50 346.05 242.59 –15.31 4.71 –3.89 792.58 9.05
18.35 338.52 245.74 –1.15 1.02 0.10 –932.16 3.66

3 142.72 7.85 223.87 18.07 –0.89 3.51 742.21 4.55
175.44 14.46 189.92 –0.70 0.48 0.08 –1532.83 0.68

4DFR 1 0.69 0.25 0.79 0.92 –0.66 0.68 1674.22 0.59
0.38 0.11 1.81 0.01 –0.32 0.79 –812.93 0.76

2 4.72 356.70 1.69 –6.49 –13.92 –10.55 1443.88 16.61
299.30 34.93 288.30 –1.92 0.68 1.87 –456.91 19.89

3 99.56 28.04 243.50 11.81 –10.85 18.37 811.44 40.24
188.39 129.57 12.91 1.91 0.58 –1.17 138.93 41.10

2PTCa 1 161.72 359.92 195.45 –3.56 1.18 0.10 1944.83 0.48
140.49 79.22 249.79 –1.16 0.51 –1.05 –1137.22 1.86

2 67.04 342.49 294.48 –4.66 –8.62 9.27 1839.80 20.57
106.24 17.79 12.41 –1.90 1.92 1.92 –747.660 17.02

3 168.56 210.59 210.59 –16.02 13.92 –2.40 935.60 10.73
76.35 112.39 12.34 1.16 2.37 –1.12 117.89 10.63

1PLG 1 123.93 123.93 233.83 12.98 1.97 12.33 38187.11 1.18
34.83 10.20 222.9 1.87 1.87 –0.73 –1145.98 2.50

2 234.93 33.94 34.93 23.93 17.97 –4.39 2599.83 13.87
45.83 12.93 139.19 0.27 1.87 –2.00 –786.93 12.91

3 198.48 45.95 63.93 24.93 10.39 6.38 2345.38 15.07
45.93 35.93 127.38 0.39 –1.98 0.23 –374.21 19.10

Table III lists the calculated conformations from both the
first and second stages. For the surface complementarity, the
top three solutions are given in Table III; for the energetic
complementarity, only the best solution for each binding mode
from the surface complementarity was given. For these five
systems, the correct binding model could be found within 50
tabu iterations. The calculated results were very encouraging
(see Table III and Figure 4); in most cases, the smallest root
mean square distance is smaller than 1.0 Å (besides 1PLG). To
these five bound complexes, the correct binding conformation
was only determined precisely using surface complementarity.
In our laboratory, abundant bound complexes were calculated
using our docking procedure, in most cases, the best binding
conformation possesses the best surface complementarity. But
in a very few cases, another binding conformation may exist
with a better surface complementarity than the correct binding
conformation; these calculation results will be discussed in the
next paper. But, in general, given a reliable surface score
function, you can be sure of finding the correct binding
conformation.

The calculation results in Table III show that detailed
energetic complementarity could not improve the results from
the surface complementarity. The values of r.m.s.d. for these
five test cases all produce larger changes after energetic
minimization. It seems that for bound complexes, surface
complementarity is more precise than energetic complementar-
ity. So, the challenge is to develop some simple methods to
evaluate the binding free energy between a ligand and a
receptor more precisely. But in this study, our main goal is
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not to calculate the binding free energy, the goal of detailed
minimization stage was to deter the high energetic conformation
and search relatively low-energy conformations. We believe
that our energetic complementarity is precise enough to filter
these solutions from the surface complementarity. The docking
results in Table III shows that the conformations near the
correct binding mode possess relatively low unbonded inter-
action energy, the interaction energy of the best solution is
much lower than the interaction energy of the other two
solutions. From the simple interaction energy, the correct and
incorrect binding conformation can be clearly partitioned. So,
for bound complexes, using only a precise surface comple-
mentarity is enough to get the correct binding conformations
in most cases.

Two unbound complexes

The ultimate goal of molecular docking is to predict protein–
protein and protein–peptide interactions without requiring a
complexed crystal structure. Compared with the docking of
these complexes with crystal structures, calculations for com-
plexes without crystal structures seem more difficult. During
the formation of a complex, some molecules will undergo
conformational changes, so the docking procedure must be
sufficiently soft to manage conformational changes, yet specific
enough to identify the correct solution. In some cases, especi-
ally, the binding regions between protein and protein or peptide
are unknown, complete search using flexible body is not
tractable. Even using rigid-body, it is very difficult to determine
the global minimum using conventional minimization algo-
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Fig. 4. The fitting structure of five bound complexes. (a) Troponin C-site III-site III homdimer (1CTA); (b) C-CRK complexes with C3G peptide (1CKA); (c)
dihydrofolate reductase complexes with methotrexate (4DFR); (d) β-trpsin complexes with pancreatic trypsin inhibitor (2PTC); (e) immunoglbulin IGG2A5
KAPPA5 (1PLG). For every case, the crystal structure is shown on the left, the predicted docking structure is shown on the right.

rithms. In these two cases, the calculation results are listed in
Table IV, the highest ranked correct prediction is shown in
Figure 5.

In order to test our hybrid minimization algorithm and
docking procedure, two uncomplexed systems were chosen.
For this, an uncomplexed trypsin inhibitor (4PTI in PDB) and
an uncomplexed trypsin (3PTN in PDB) were used in one
instance, and an uncomplexed serine proteinase (2PKA) and
an uncomplexed boveine pancreatic trypsin inhibitor (2BPI)
were used in another instance. The PDB codes for these two
cases are 2PTC and 2KAI.

For 2KAI, it can be found that the best solution from the
surface complementarity no longer corresponds to the correct
docking conformation. After detailed energetic minimization
and superimposed with the crystal structure of bound 2KAI,
a good solution was found in four out of 10 solutions from
the tabu list. So for some unbound complexes, using surface
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complementarity alone cannot reliably dock unbound com-
plexes, further energetic complementarity is needed to filter
these solutions from the surface complementarity. In the mean
time, we cannot conclude that the correct solution is sure to
have the best energetic complementarity, because in the docking
process, we do not really consider the flexibility of the systems.
For 2KAI, the second solution has the smallest interaction
energy, but its r.m.s.d. was larger than 10 Å.

The crystal structures of uncomplexed trypsin (3PTN) and
an uncomplexed trypsin inhibitor (4PTI) have been solved
separately in different crystal forms. A comparison of their
structures with the corresponding components of a complex
has indicated that relatively large conformational changes have
occurred, especially in the trypsin inhibitor. After superimpos-
ing only the backbone atoms for 3PTN and 4PTI, the r.m.s.d.
for 3PTN is only 0.323 Å; but for 4PTI, the conformational
change is relatively large, its r.m.s.d. is 1.272 Å. This test case
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Table IV. Results of molecular docking calculations for two unbounded protein complexes

PDB code Solution Rotational Eular angles Translation vector (Å) Surface Interaction R.m.s.
number (radian) score energy (kJ/mol) (Å)

2PTC 1 30.86 335.75 320.38 14.59 11.36 –12.42 1137.59 2.54
38.19 9.11 31.66 0.34 –1.15 –1.98 –893.47 2.71

2 78.03 3.37 325.50 1.16 9.19 16.95 872.78 13.56
5.16 104.05 312.32 –2.65 1.92 –2.92 –552.01 14.98

3 128.51 4.13 260.03 –3.62 12.31 16.02 927.55 12.98
103.25 185.54 105.23 1.50 0.95 0.06 –651.855 11.53

2KAI 1 23.34 9.07 335.17 4.66 –17.26 2.06 973.20 11.98
34.95 353.03 39.20 –1.01 0.28 1.11 –723.95 10.64

2 14.97 0.82 316.42 –7.20 7.04 –7.72 726.26 15.98
134.93 320.42 150.20 –2.00 1.04 –0.85 –965.84 17.83

3 12.05 1.16 327.56 –1.74 –2.49 –2.48 703.11 14.87
39.83 334.93 358.23 1.76 0.38 0.33 –232.95 14.99

4 93.84 1.83 231.47 –10.45 5.13 –1.84 675.05 1.72
94.83 134.83 338.39 1.06 –0.66 –8.35 –934.87 1.62

Fig. 5. The fitting structure of two unbound complexes. (a) β-Trpsin
complexes with pancreatic trypsin inhibitor (2PTC); (b) kallikrein A
complexes with bovine pancreatic trypsin inhibitor. Since the two structures
cannot be distinguished in the superimposed forms, the fitted structure is
moved away from the crystal structure. For each case, the left picture is the
crystal structure and the right one is the fitted structure.

is very challenging, because it has been extensively studied
by several other docking procedures (Kaichalski-Katziret al.,
1992; Gabbet al., 1997). The attempt by Katchalski-Katzir
et al. (1992) to dock 3PTN and 4PTI was unsuccessful. Our
calculation results listed in Table IV show the correct binding
conformation was successfully found. When we superimposed
the native complexed crystal structure of 2PTC with our
docking result, the r.m.s.d. was 2.54 Å (only backbone atoms
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were considered in the calculation of r.m.s.d.). From Table IV,
it is obvious that the best solution from surface complementarity
corresponds with the correct solution, but it no longer signific-
antly better than the rest of the solutions. It is relatively
difficult for us to determine if the first solution is the correct
solution, but after the second stage of energetic complementar-
ity, we found that the first solution was more energetically
favorable, in fact, this solution was very close to the correct
solution. In order to compare the potential influence of the
conformational change and test our minimization algorithm
further, we docked receptor and ligand from the complexed
protein structure together (see case 4 in Table III). For the
bound and unbound structures, the same parameters were used.
But we found that the calculation results were so different,
the best solution of surface complementarity for the bound
system was much better than that for the unbound system.
When comparing their r.m.s.d., the result for bound system
was significantly superior to unbound system, the r.m.s.d. for
bound system is only 0.475, much smaller than that of the
unbound system. The reason for these differences between the
bound and unbound complexes are mainly derived from
the conformational changes during the process of forming the
complex. These conformational changes may greatly affect the
shape of a molecular surface. Minor changes in the molecular
surface, especially near the binding site, will greatly affect the
docking results. Our methods only implicitly consider the
conformation change for these molecules near the binding site,
but the conformations for these molecules do not really change.
In this circumstance, the docking results will produce some
deviations from the real complex. But for 2PTC, the surface
did not change a lot in the process of complex formation, the
essential molecular shape does not change greatly. Generally,
for most unbound complexes, the best binding conformation
may not correspond with the best surface or energetic comple-
mentarity, but some binding conformations with a relatively
large score of surface and energetic complementarity surely
can be found near the correct binding mode. So using surface
complementarity and a good minimization algorithm, combined
with the filter of energetic complementarity, in most cases, it
is possible for us to predict the binding mode for an unbound
complex.

Technical information

The complete docking package, named SFDOCK, consists of
approximately 5000 lines of C language code, including
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a soft-docking procedure for protein–protein interactions, a
flexible-docking procedure for the small molecules–protein
procedure and a database searching procedure for ligand
design. All docking experiments were carried out on a PC.
The soft-docking procedure has been embedded into the Peking
University Interaction System as a separate module and can
be easily used through a graphics interface. Some source code
from this study can be obtained from the author upon request.
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