
Abstract 3D-QSAR studies were conducted on a series
of paullones as CDK inhibitors using three-dimensional
quantitative structure–activity relationship (3D-QSAR)
methods. Two methods were compared: the widely used
comparative molecular field analysis (CoMFA) and the
recently reported comparative molecular similarity indi-
ces analysis (CoMSIA). Systematic variations of some
parameters in CoMSIA and CoMFA were performed to
search for the best 3D-QSAR model. The computed re-
sults showed that the 3D-QSAR models from CoMSIA
were clearly superior to those from CoMFA. Using the
best model from CoMSIA analysis, a significant cross-
validated q2 was obtained and the predicted biological
activities of the five compounds in the test set were in
good agreement with the experimental values. The corre-
lation results obtained from CoMSIA were graphically
interpreted in terms of field contribution maps allowing
physicochemical properties relevant for binding to be
easily mapped back onto molecular structures. The fea-
tures in the CoMSIA contour maps intuitively suggested
where to modify a molecular structure in terms of physi-
cochemical properties and functional groups in order to
improve its binding affinity, which is very important for
improving our understanding of the ligand–receptor in-
teractions and in helping to design compounds with im-
proved activity.
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Introduction

The cyclin-dependent kinases (CDKs) are a group of ser-
ine threonine kinases that play a crucial role among the
manifold molecular entities that are involved in the sur-
veillance of the cell cycle. The CDKs control the trans-

mission between successive stages of the cell cycle. [1]
The oscillating concentration of the cyclins during the
cell cycle is the basis for the stage-dependent activity of
the CDKs. Binding to CDK inhibitory proteins (CKIs)
results in deactivations of CDKs. In various human tu-
mors, deregulations of CDK-related mechanisms have
been found, such as overexpression of cyclins or deletion
of genes encoding for CKIs. [2, 3] Considering these ob-
servations, CDKs are attractive targets for the develop-
ment of antitumor drugs. [4, 5]

According to a few reports, [6, 7, 8] three types of
CDK inhibitors, such as lactones, flavonoids, and several
purine derivatives have been found to show antiprolifer-
ative activity for colon and pancreatic carcinoma cell
lines. However, the number of chemical agents that act
selectively as CDK inhibitors is limited. Recently, inhib-
itory experiments revealed that the 9-bromo-7,12-dihy-
droindolo[3,2-d] benzazepin-6 (5H)-one (kenpaullone) is
a potent inhibitor of CDKs with selectively for CDK1,
CDK2, and CDK5. [9] However, compared to the in vitro
antitumor potency of fluopiridol, kenpaullone exhibits
only a modest antiproliferative activity in the in vitro
cancer cell line screening. In order to counter this prob-
lem, Schultz et al. [9] designed a synthesis study with 
a view to searching for kenpaullone-related CDK inhi-
bitors with improved potency and antitumor activity. 
Although the results of the molecular modification 
experiments have been published, quantitative informa-
tion on structure–activity relationships is needed for fur-
ther rational development and direction of selective syn-
thesis. Until now, however, very few studies on the rela-
tionship between the chemical structures and the biologi-
cal functions of this kind of compound have been report-
ed. In this paper, a detailed correlation study was accom-
plished on the basis of a newly developed 3D-QSAR
technique: comparative molecular similarity indices
analysis (CoMSIA). Moreover, comparative molecular
field analyses (CoMFA) were also conducted as a com-
parison.L. Zhu · T. Hou · X. Xu (✉ )
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Materials and methods

The principles of CoMSIA

From its advent in 1988, CoMFA has been developed as one of the
most powerful tools in 3D-QSAR. [10] CoMFA quantifies the sta-
tistical relationship between the 3-D properties of a set of small
molecules and a global property, such as their potency in a partic-
ular biological assay. This method combines pharmacophore map-
ping, quantitative structure–activity relationships (QSARs), inter-
molecular energy calculations, and multivariate statistics to pro-
duce a 3D-QSAR model that appears to have wide applicability.

Recently, another alternative molecular field analysis,
CoMSIA, based on molecular similarity indices, has been re-
ported. [11, 12, 13] The approach can avoid some inherent defi-
ciencies arising from the functional form of Lennard-Jones 
and Coulomb potentials used in the conventional CoMFA. In
CoMSIA, a distance-dependent Gaussian-type functional form has
been introduced, which can avoid singularities at the atomic posi-
tions and the dramatic changes of potential energy for these grids
in the proximity of the surface. Also no arbitrary definition of cut-
off limits is required in CoMSIA. Moreover, using molecular simi-
larity indices analysis, the contour maps of the relative spatial con-
tributions of the different fields can be substantially improved.
These are very intuitive for interpretation in terms of separate
property fields. Compared with usual CoMFA, the CoMSIA has

the better ability to visualize and interpret the correlations ob-
tained in terms of field contributions. The unique difference be-
tween conventional CoMFA and CoMSIA is the field type and the
field calculation function. In CoMSIA, similarity is expressed in
terms of different physicochemical properties: steric occupancy,
partial atomic charges, local hydrophobicity, and H-bond donor
and acceptor properties. A Gaussian-type distance-dependence
function has been used to calculate different kinds of physico-
chemical properties. The indices AF.K between the compounds of
interest and a probe atom are calculated according to:

where i: summation index over all atoms of the molecule j under
investigation; ωik: actual value of the physicochemical property k
of atom, ωprobe,k: probe atom with charge +1, radius 1 Å, hydroph-
obicity +1, H-bond donor and acceptor property +1; a: attenuation
factor; riq: mutual distance between probe atom at grid point q and
atom i of the investigated molecule.

Data set and structural alignment

The paullone derivatives’ inhibitory data, represented by IC50
(µM) values of CDK1 inhibition, were taken from the literature [9]
and are listed in Table 1 (see also Fig. 1). The log(1/C) (C repre-
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Table 1 Structures of the mol-
ecules studied, experimental
and calculated biological activ-
ity by the best 3D-QSAR mod-
el from the CoMSIA analyses 

No.a R1 R2 log(1/C) log(1/C) Residue
(obsd.) (calcd.)

1 H 9-Br 0.3980 0.3573 0.0407
2 H 10-Br –0.1140 –0.2819 0.1679
3 H H –0.8450 –0.6930 –0.1520
4 H 9-Cl 0.2220 0.3584 –0.1364
5 H 9-F –0.2040 0.0455 –0.2495
6 H 9-OCH3 0.0460 –0.0757 0.1217
7 H 9-CH3 –0.3010 –0.3947 0.0937
8 H 9-CF3 0.3980 0.3995 –0.0015
9 H 9-CN 1.6200 1.6636 –0.0436

10 H 9-NO3 1.4560 1.3355 0.1205
11 H 11-Cl –0.1460 –0.1637 0.0177
12 H 11-Br –0.1140 –0.1454 0.0314
13 H 11-Et –0.5800 –0.6768 0.0968
14 H 8,10-di-Cl –0.3980 –0.4407 0.0427
15 2-Br H –0.5190 –0.4982 –0.0208
16 2-Br 9-CF3 0.6200 0.5962 0.0238
17 2,3-di-OCH3 H –0.6330 –0.5703 –0.0627
18 2,3-di-OCH3 9-Br 0.6990 0.5765 0.1225
19 2,3-di-OCH3 9-CF3 0.5530 0.6196 –0.0666
20 4-OCH3 H –2.6330 –2.7694 0.1364
21 2,3-di-OH 9-Br –0.4770 –0.4353 –0.0417
22 4-OH 9-Br –1.6020 –1.5604 –0.0416
23b H 11-Me –0.4770 –0.6462 0.1692
24b 2-Br 9-Br 0.5230 0.5515 –0.0285
25b 4-OCH3 9-Br –2.3980 –1.9147 –0.4833
26 Boc Boc –3.0000 –3.1322 0.1322
27 CH3 H –1.3010 –1.6575 0.3565
28 C2H5 H –2.6720 –2.2229 –0.4491
29 CH2-Ph H –1.5440 –1.4834 –0.0606
30 CH2OCH3 H –0.8060 –0.9137 0.1077
31 H CH3 –0.7920 –0.8516 0.0596
32 H C2H5 –1.3620 –1.1189 –0.2431
33 H CH2-CH=CH2 –1.7780 –1.7916 0.0136
34 H CH2CO2CH3 –0.1460 –0.1016 –0.0444
35c –0.3620 –0.3770 0.0150
36c –1.6330 –1.5925 –0.0405
37c 0.0000 0.0464 –0.0464
38b H Boc –1.8450 –1.1687 –0.6763
39b H CH2-CH2-OH –0.4770 –1.0224 0.5454

a In compounds 1–25,
R3=R4=H, in compounds
26–39, R1=R2=H,
b These compounds were used
as a test set and not included in
the derivation of equations.
c The structures of 35, 36, and
37 are shown in the chart in
Fig. 1.



sents IC50) values were used as the dependent variable to derive
3D-QSAR models. A training set of 34 compounds was used for
CoMSIA and CoMFA analyses. In addition, five other com-
pounds, selected from various ranges of biological activity, were
used as the test set to verify the actual prediction of the model. 

The molecular geometries of all compounds in Table 1 were
modeled using the SYBYL molecular simulation package. [14]
The initial structures were first minimized using molecular me-
chanics with the MMFF94 force field. [15] Then these structures
were fully optimized using the semiempirical AM1 method, avail-
able in MOPAC 7.0. [16] From the 3D structures, it was found that
this series of compounds possessed relatively rigid core structures
constituting a large conjugated system. So a rigid alignment was
applied to superimpose all 39 compounds onto an unsubstituted
template shown in the chart in Fig. 2 using an atom-by-atom least-
square fit as implemented in the SYBYL FIT option. Compound 9
with the highest biological activity was selected as the reference
molecule. Figure 3 shows the stereoview of aligned molecules (in-
cluding the test set) within the grid box (grid spacing 2.0 Å) used
to generate the CoMSIA columns. 

Determination of the 3D-QSAR models

In the present CoMSIA analyses, five physicochemical properties
k (steric, electrostatic, hydrophobic, and hydrogen-bond acceptor
and donor) were evaluated, using a common probe with 1 Å radius
and charge, hydrophobicity, and hydrogen-bond property of +1.
The value of the attenuation factor a was initially set to 0.3. A lat-
tice of 2 Å was generated to surround the whole molecular aggre-
gates after alignment. The dimension of the surrounding lattice
was selected with a sufficiently large margin (=4 Å) to enclose 

all aligned molecules. The effect of grid point spacing on the
CoMSIA analysis was also investigated at 1.0, 1.5, 2.5, and 3.0 Å
with the same orientation.

To check the statistical significance of the models, cross-vali-
dation was done by means of the leave-one-out procedure using
the enhanced version of PLS, the SAMPLS method. [17] The opti-
mal number of components was determined by selecting the high-
est q2 value. Then the same number of components was subse-
quently used to derive the final 3D-QSAR model using the no
cross-validation calculations. The CoMSIA results were interpret-
ed graphically by field contribution maps using the field type
“stdev*coeff”. The contour level was chosen iteratively to produce
the best interpretable contour maps.

In the CoMFA calculations, steric and electrostatic fields were
calculated as implemented in SYBYL using Lennard-Jones and
Coulomb potentials, respectively. MMFF94 charges were used in
the determination of the electrostatic field. All CoMFA calcula-
tions were performed with SYBYL standard setup (steric and elec-
trostatic fields with Lennard-Jones and Coulomb-type potentials,
dielectric constant 1/r, cutoff 30 kcal/mol) using an sp3 carbon
probe atom with a charge of +1.0. The extent and the orientation
of the grids surrounding the molecules tested are the same as those
in the CoMSIA analyses, and the grid spacing was set to 2 Å. All
calculations in this study were performed in SYBYL on a SGI 
Octane 2-CPU workstation.

Results and discussion

CoMSIA and CoMFA studies

Three CoMSIA models using different fields are shown
in Table 2. Only using the steric and the electrostatic
fields, the 3D-QSAR model from the CoMSIA analyses
(q2=0.604) is acceptable. After the hydrophobic field
was added, the predictive power of the 3D-QSAR model
from the CoMSIA analyses was improved (q2=0.659),
which meant that the biological activity essentially ex-
hibited a significant relationship with the hydrophobic
field. After considering all five kinds of fields applied in
CoMSIA including hydrogen-bonding fields (hydrogen-
bonding donor and hydrogen-bonding acceptor fields), a
CoMSIA model with the best statistical significance
(q2=0.704) was obtained. Obviously, the biological activ-
ity was also closely concerned with hydrogen-bonding
properties, and all of the following CoMSIA models
were concerned not only with the steric, electrostatic,
and hydrophobic fields, but also with the two hydrogen-
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Fig. 1 Chart showing the structures of 35, 36, and 37

Fig. 2 Chart of the unsubstituted template

Fig. 3 Stereoview of all
aligned molecules in the train-
ing and test set



bonding fields. Two CoMFA models were developed us-
ing the different field combinations (Table 2). Only using
steric and electrostatic fields, the CoMFA model was 
statistically unacceptable (q2=0.307). After adding the
hydrogen-bonding fields, the predictive power of the
CoMFA model was significantly improved (q2=0.638),
but it is still worse than the best CoMSIA model.

In CoMSIA, besides the usual steric and electrostatic
fields in CoMFA, three other kinds of fields, including a
hydrophobic field, a hydrogen-bonding donor field, and
a hydrogen-bonding acceptor field, were provided.
Should we consider all these five fields at once in a
CoMSIA model? We think that different researchers
would give different answers according to the different
systems studied. For example, some researchers consider
that the hydrogen-bonding interactions should be distin-
guished from electrostatic interactions; consequently, 
the hydrogen-bonding fields should be considered in a

CoMFA or CoMSIA analysis. However, others consider
that hydrogen bonds are totally electrostatic in nature,
which suggests no substantial angle dependence and a
very slow falloff with distance. In practical studies, we
think that the properties considered probably intercor-
relate in a complicated manner. In the present work, 
we have considered five fields to produce the best 
3D-QSAR model. It is unlikely that they are completely
independent of each other; the degree of the interdepen-
dence is difficult to estimate. Focusing solely on the pre-
dictive power of a QSAR model cannot justify the con-
sideration of five different kinds of fields. However, con-
sidering five fields provides an opportunity to partition
the variance analysis with respect to particular physico-
chemical properties associated with the molecules. This
aspect is of utmost importance if a targeted optimization
of molecules in a design program is anticipated and 
3D-QSAR is intended to support this step.
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Table 2 Results of the CoMFA
and CoMSIA analyses of sever-
al different field combinationsa

CoMFA(1) CoMFA(2) CoMSIA(1) CoMSIA(2) CoMSIA(3)

q2 0.307 0.638 0.604 0.659 0.704
r2 0.563 0.999 0.974 0.983 0.983
F 41.224 1327.218 169.859 178.839 208.746
No. of compounds 1 12 6 8 7
Std error of estimate 0.720 0.049 0.190 0.161 0.160
Fraction

Steric 0.270 0.300 0.275 0.190 0.086
Electrostatic 0.730 0.166 0.725 0.537 0.320
H-bond acceptor 0.342 0.176
H-bond donor 0.191 0.239
Hydrophobic 0.273 0.174

Table 3 Effect on the results of
the CoMFA analyses using dif-
ferent grid spacings

CoMFA(1) CoMFA(2) CoMFA(3) CoMFA(4) CoMFA(5)

Grid spacing (Å) 1.0 1.5 2.0 2.5 3.0
q2 0.566 0.690 0.638 0.313 0.443
r2 1.000 1.000 0.999 0.466 0.977
F 5301.393 2665.049 1327.218 27.914 97.449
No. of compounds 19 17 12 1 10
Std error of estimate 0.019 0.029 0.049 0.796 0.195
Fraction

Steric 0.313 0.368 0.342 0.279 0.445
Electrostatic 0.161 0.186 0.191 0.069 0.291
H-bond acceptor 0.281 0.252 0.300 0.316 0.264
H-bond donor 0.244 0.195 0.166 0.336 0.000

Table 4 Effect on the results of
the CoMSIA analyses using
different grid spacings

a In these models, all parame-
ters concerned with CoMSIA
and CoMFA analyses are de-
fined as default values. (The at-
tenuation factor used in the
CoMSIA analyses above is 0.3,
and the grid spacing used is
2.0 Å)

CoMSIA(1) CoMSIA(2) CoMSIA(3) CoMSIA(4) CoMSIA(5)

Grid spacing (Å) 1.0 1.5 2.0 2.5 3.0
q2 0.696 0.697 0.704 0.661 0.609
r2 0.982 0.982 0.983 0.979 0.991
F 205.619 206.156 208.746 174.580 250.947
No. of compounds 7 7 7 7 10
Std error of estimate 0.161 0.161 0.160 0.174 0.122
Fraction

Steric 0.085 0.084 0.086 0.095 0.132
Electrostatic 0.322 0.328 0.320 0.300 0.239
Hydrophobic 0.180 0.174 0.174 0.156 0.227
H-bond acceptor 0.172 0.178 0.179 0.199 0.179
H-bond donor 0.241 0.237 0.239 0.250 0.223

a The attenuation factor used in
the CoMSIA analyses above is
0.3



Optimization of 3D-QSAR models

At the start of this study, we used a default grid spacing
of 2.0 Å, as suggested in SYBYL. Moreover, four addi-
tional grid spacings with 1.0, 1.5, 2.5, and 3.0 Å were
used for CoMSIA and CoMFA analyses (see Tables 3
and 4). From the results of CoMSIA analyses, it seems
that, when the grid spacing was smaller than 3.0 Å, the
shift of the q2 values for the 3D-QSAR models was not
very marked, and the field properties around the mo-
lecular aggregate could be well expressed. When the 
grid spacing is defined as 3.0 Å, some information 
on the field properties in some regions is lost, but the
3D-QSAR model (q2=0.609) still has convincing predic-
tive power. The 2.0 Å grid spacing resulted in the best
model in terms of both cross-validated and non-cross-
validated statistics. The model with the 2.0 Å grid spac-
ing was selected as the model of choice for predictive
purposes. In our previous work, we also found that,
when the grid spacing is smaller than 3.0 Å, the statisti-
cal significance of the CoMSIA models did not show
any obvious fluctuation. [18] 

For comparison, the shift of the q2 values for the 
3D-QSAR models from CoMFA was evident as the grid
spacing was changed. The 2.0 Å grid was shifted by
+0.5 Å and +1.0 Å to determine the effect of altered lat-
tice point location on the results of the CoMFA study.
This resulted in significantly lower correlation (q2=0.313
and q2=0.443, respectively) than in the original study
with 2 Å (q2=0.638). Thus, at the large grid resolution 
in CoMFA, some important information in some regions
may be lost. At lower grid spacing (1.0 Å), the 
3D-QSAR model produced reduced statistical signifi-
cance (q2=0.566). This is because the increase in the
number of lattice points also increases the noise in the
PLS analysis and leads to a less statistically significant
model. Thus, if not incorporated with a variable selec-
tion procedure, increasing the grid resolution in CoMFA
studies will generally result in increased computation
time and decreased predictivity. The best significant
CoMFA model (q2=0.690) was obtained with the grid
spacing defined as 1.5 Å. However, its statistical signifi-
cance seemed to be slightly poorer than the best model
from the CoMSIA analyses (Table 2).

If we compare the values of q2 for the CoMSIA and
CoMFA models in Tables 3 and 4, we find that the
changes of q2 with the grid resolution in CoMSIA and
CoMFA are quite similar. Neither of the best CoMSIA
and CoMFA models prefers a specific grid spacing. Re-
searchers generally select the model that works best
when the resolution is set properly. Too high or too low a
grid resolution will reduce the statistical significance of
the CoMSIA or CoMFA models. However, for CoMSIA
and CoMFA, the changeable amplitude of q2 in different
grid resolutions is quite different. For example, the dif-
ference of the q2 of the CoMSIA models in 2.0 and 2.5 Å
grid spacings is only 0.043, while this value for CoMFA
is 0.327. In CoMSIA and CoMFA, a discrete grid must
be used to represent the continuous molecular fields, and

the steric and electrostatic fields on each lattice point are
calculated with distance-sensitive functions. In CoMFA,
the Lennard-Jones steric field decays significantly with
the increase of the distance. For CoMFA calculations, if
we use a relatively large grid spacing, some important
information in some regions may be lost. In CoMSIA,
the Gaussian-type molecular fields will decay more
slowly and gently with the increase of the distance, so
the influence of the large grid spacing is not so obvious.

At 2.0 Å grid spacing, another important factor con-
tributing to the CoMSIA analyses, the attenuation factor
α, was also investigated. A series of α were selected
from 0.1 to 0.9. In CoMSIA, a Gaussian-type distance
dependence was applied. Reducing α to smaller values
meant that a probe placed at a particular lattice point de-
tected molecular similarity in its neighborhood more
globally. On the other hand, larger values of α implied a
more localized evaluation of similarity. Figure 4 shows
the change of q2 of different 3D-QSAR models with dif-
ferent α. For the data set, the values of α=0.2, 0.3, and
0.4 produced similar statistical models, but the statistical
significance of the training set showed that the model of
α=0.3 was much better than the other two models using
α=0.2 and 0.4.

Through careful optimization of different models with
different grid spacings and attenuation factors, the model
from CoMSIA analyses with 2.0 Å grid spacing (α=0.3)
was selected as the best judged by the cross-validation
correlation (q2=0.704, F=208.746, SD=0.160), and the
following discussions refer only to this model. As a
whole, the 3D-QSAR models from CoMSIA analyses
were not very sensitive to the change of the grid spacing
and the attenuation factor, but careful calibrations are
needed to get the best model. As a comparison, the 
3D-QSAR models from CoMFA analyses changed great-
ly with the shift of the grid spacing.

Figure 5 shows a plot of the observed versus calculat-
ed biological activities of the five candidates in the test
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Fig. 4 Variation of q2 upon changing the attenuation factor α used
in the distance dependence between the probe atom and the atoms
of the molecules in CoMSIA



set. The calculated biological activities using the best
CoMSIA model (grid spacing=2.0 Å, α=0.3) and the res-
idue values from the observed values for the training set
are shown in Table 1. The best 3D-QSAR model predict-
ed well for the five tested compounds in terms of actual
prediction, and the predictions were even better than for
some molecules in the training set (see Fig. 6). So the
derived model was satisfactory from the viewpoint of
statistical significance and actual predictive ability.
Combination of combinatorial library design, followed
by application of the predictive tool developed in this re-
search, could lead to a new compound with the activity
of interest. 

CoMSIA contour maps

The field type “stdev*coeff” was used to obtain contours
from a CoMSIA analysis that elucidated the relationship

between differences in the fields and variations in the de-
pendent variables. At this point, the major advantage of
CoMSIA compared to standard CoMFA becomes impor-
tant: its better ability to visualize and interpret the corre-
lations obtained in terms of field contributions. Strictly
speaking, the plots represent contours of the coefficients
obtained from PLS. They indicate those lattice points
where a particular property contributes significantly and
thus explain the variation in affinity data. They give an
excellent insight into the relationship between structure
and activity for the different physicochemical properties
of the considered structures. The coefficient contour
plots may help to determine the important regions where
any changes of some kind of property may affect the bio-
logical activity and identify the important features con-
tributing to interactions between ligand and receptor in
the active site. Graphical representations of the best
CoMSIA model are displayed in Figs. 7, 8, 9, 10, and 11.

Figures 7 and 8 show the steric and electrostatic 
coefficient contour maps, respectively. The compound 9
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Fig. 5 Comparison of experimental log(1/C) with calculated
log(1/C) using the best CoMSIA model

Fig. 6 Plot of the actual prediction of 3D-QSAR from CoMSIA(3)
model in Table 4

Fig. 7 The contour plot of the CoMSIA steric fields (stedv*coeff).
The favorable steric areas with more bulk are indicated by green
isopleths, whereas the disfavored steric areas are shown by yellow
isopleths. The most active compound 9 is shown as the reference
compound

Fig. 8 The contour plot of the CoMSIA electrostatic fields
(stedv*coeff). The favorable electrostatic areas with positive
charges are indicated by blue isopleths, whereas the favorable
electrostatic areas with negative charges are shown by red iso-
pleths. The most active compound 9 is shown as the reference
compound



with the highest inhibitory activity was taken as the ref-
erence compound for specifying 3D space. In Fig. 7, the
CoMSIA contour plot shows green colored regions
where increased steric bulk is associated with enhanced
affinity and yellow colored regions where increased ster-
ic bulk is associated with diminished affinity. One bulky
unfavorable area was near the 5-position, while two
bulky favorable areas were near the 2- and 9-positions
on the benzene ring. From the size of the two green ar-
eas, the green region near the 9-position is seen to be
more important than that near the 2-position. Different
substituted groups near these areas would affect the
binding affinities by the steric complementarity between
the receptor and the ligand. For example, the 9-bromo-
substituted compounds 1, 24, 18, and 25 showed higher
activity than their unsubstituted counterparts 3, 15, 17,
and 20. The shift of the bromo substituent from the 9-
position in kenpaullone (compound ) to the 10-position
(compound ), 11-position (compound ) resulted in
decreased activity. The different inhibition pattern caused
by the shift of the substituents shows that the shape of
the binding site means that R2 group must be substituted
at the specific position in order to produce good surface
complementarity between ligand and enzyme. The unfa-
vorable bulky region is located near the 5-position.
Large groups in this area will decrease the activity. For
example, none of the kenpaullone derivatives with sub-
stitution at the indole nitrogen atom was superior to the
lead structure with respect to CDK1 inhibition. 

In Fig. 8, regions where increased positive charge is
favorable for affinity are indicated in blue, while regions
where increased negative charge is favorable for affinity
are indicated in red. From the fraction of field, the 
electrostatic field (0.320) seems more important than 
the steric field (0.086). There are two red areas near the
9- and 5-positions. In these areas, introduction of strong-
er electron-withdrawing substituents will be favorable
for biological activity. For example, replacement of the
9-bromo substituent of kenpaullone with the electron-
withdrawing 9-cyano group (compound ) and 9-nitro
group (compound ) leads to a more than 10-fold higher
potency than kenpaullone. We were interested to see
that, near the 9-position on the benzene ring, there exist-
ed a relatively small blue area neighboring the red area.
As to the blue region near the benzene ring, more posi-
tive charge is preferred on the benzene ring. The strong
charge-withdrawing groups linked to the benzene ring
will make the charge distributed on the benzene ring rel-
atively positive, which is expressed by the blue region.

Figure 9 reveals regions colored in gray that corre-
spond to a favorable influence of hydrophilicity and re-
gions colored in yellow which correspond to a favorable
influence of hydrophobicity. From Fig. 9, it can be seen
that in this group of compounds more hydrophilic re-
gions were preferred. The relatively excessive area col-
ored in gray suggested that the more hydrophilic subs-
tituents near these regions would enhance the biological
activity. It seems that the residues in the active site di-

rectly interacting with the inhibitors are mainly hydro-
philic, and the introduction of hydropholic groups will
be favorable. There is only one yellow area near the 
1-position. We think that this area may be generated by
the hydrophobic benzene ring.

The graphical interpretations of the field contributions
of the H-bond properties are shown in Fig. 10 (H-bond
acceptor field) and Fig. 11 (H-bond donor field). In prin-
ciple, they should highlight areas beyond the ligands
where putative hydrogen partners in the enzyme could
form H-bonds to influence binding affinity. Two magen-
ta isopleth contour maps in the H-bond acceptor field
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Fig. 9 The contour plot of the CoMSIA hydrophobic fields
(stedv*coeff). The favorable hydrophobic areas are indicated by
yellow isopleths, whereas the disfavored hydrophobic areas are
shown by white isopleths. The most active compound 9 is shown
as the reference compound

Fig. 10 The contour plot of the CoMSIA H-bond acceptor fields
(stedv*coeff). Magenta isopleth contours maps beyond the ligands
where H-bond donor groups in the receptor will be favorable for
biological activity, while red isopleths represents H-bond donor
groups in the receptor unfavorable for biological activity. The
most active compound 9 is shown as the reference compound



(Fig. 10) surround the R2 and R3 sites, which may be at-
tributed to the lone pair electrons on the indole oxygen
atom and the O atoms on the substituents in the 9-posi-
tion with the corresponding H-bond donors in receptor.
The other two regions contoured in red should avoid 
H-bond acceptor capabilities. In the H-bond donor field
(Fig. 11), there are two blue contour maps around the R3
and R4 sites. We believe that these two areas are obvi-
ously caused by the lactam and the indole nitrogen at-
oms. Two hydrogen atoms linked to these two nitrogen
atoms acted as optimal hydrogen donors. However, when
these hydrogen atoms are replaced by other groups, the
hydrogen-donor capabilities are lost. Thus, none of the
kenpaullone derivatives with substitution at either the
lactam or the indole nitrogen atoms were superior to the
lead structure with respect to the CDK1 inhibitions
(compounds . 

The previous discussion of the graphical results of the
different field contributions has demonstrated that many
of the features in these maps can be interpreted in terms
of properties reflected in the surrounding environment.
The modeling study demonstrates that the CoMSIA
method can be used to rank possible candidates from a
library in a predictive manner. Such information is im-
portant in designing and selection of components for a
computational combinatorial library.

Conclusions

Multiple CoMSIA and CoMFA 3D-QSAR models have
been developed from a data set of paullones as CDK in-
hibitors and validated with a test set. Five different types

of fields, including steric, electrostatic, hydrophobic, and
H-bond acceptor and donor fields were considered 
in CoMSIA analyses. In order to search for the best 
3D-QSAR model, systematic variations of some parame-
ters in CoMSIA and CoMFA were performed. The best
model obtained from the CoMSIA analyses possesses
promising predictive ability as indicated by the high
cross-validated correlation and the prediction on the ex-
ternal test set. The characteristics of the CoMSIA 3D
contour plots derived in this study may be helpful for us
to understand the underlying mechanism of the recep-
tor–drug interaction and are expected to provide signifi-
cant information for designing new potential drugs.
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Fig. 11 The contour plot of the CoMSIA H-bond donor fields
(stedv*coeff). Blue isopleth contours maps beyond the ligands
where H-bond acceptor groups in the receptor will be favorable
for biological activity, while gray isopleths represents H-bond ac-
ceptor groups in the receptor unfavorable for biological activity.
The most active compound 9 is shown as the reference compound


