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We present a comprehensive molecular simulation program
package, the Peking University Drug Design System
(PKUDDS), which runs on personal computers. PKUDDS
has been developed mainly for computer-aided drug design
using the methods of two-dimensional quantitative
structure–activity relationships, three-dimensional quanti-
tative structure–activity relationships, molecular docking,
and database screening. This study presents an overview of
its functionality, especially of methods developed in our
group. PKUDDS uses genetic algorithms in molecular dock-
ing, conformational analysis, and quantitative structure–
lactivity relationships as the most useful optimization tech-
nique. A user-friendly graphical interface provides easy
access to many functions of PKUDDS. We report some
examples of our considerable research using PKUDDS. ©
2001 by Elsevier Science Inc.
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INTRODUCTION

The development of new drugs is a lengthy and expensive
process. The first step is to find potential lead compounds with
desired biological activity. Computer-aided drug design
(CADD) techniques can help increase the pool of interesting
structures that can be evaluated. Recent advances have made

CADD methods accessible to nonexperts. The rapid increase in
computer speed and memory and the decreased cost of personal
computers and workstations have brought significant compu-
tational resources within the reach of most researchers. Inex-
pensive computer graphics programs offer improved methods
of organizing and visualizing molecular information. More-
over, the algorithms underlying molecular modeling have seen
a steady improvement, leading to increasing accuracy in the
calculation of molecular properties.

The fundamental assumption of most CADD procedures is
that the key biological event, at the molecular level, is the
recognition and noncovalent binding of small molecules to
specific sites on target biological macromolecules (receptors).
Generally, CADD procedures can be divided into two catego-
ries: ligand structure-based methods; and receptor structure-
based methods. We have incorporated methods such as molec-
ular docking, quantitative structure–activity relationships, and
database screening for both of these CADD categories into our
modelling package.

OVERVIEW OF PEKING UNIVERSITY
DRUG DESIGN SYSTEM (PKUDDS)

We developed the Peking University Drug Design System
(PKUDDS) (Figure 1) to provide a convenient method of
accessing methods for drug discovery developed in our group.
For ease of maintenance and future extensions the system was
developed on personal computers to function with Windows
95, Windows 98, or Windows NT operating systems.

PKUDDS provides a powerful simulation capability and a
friendly graphical user interface. The computational code and
graphical user interface are written with Visual C11.

Color Plate 1 shows the menu bar of PKUDDS containing
several menu items, including File, Edit, View, Build, Select,
Compute, Analysis, Docking, QSAR, Database, Tools, Setup,
and Help. The functions in Figure 1 correspond to different
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menu items shown in Color Plate 1. The molecular displays
appear in the workspace below the menu bar.

There are two way to generate a molecular model. First,
using the tools and editing features under the ‘Edit’, ‘Build,’
and ‘Select’ menu items, we can create a two-dimensional (2D)
sketch of a molecule using a mouse, then convert it into a
three-dimensional (3D) representation. Second, we can read in
atom types and molecular coordinates that have been saved in
many file formats including the Sybyl mol2 format, the MDL
mol format, the Brookhaven Protein Data Bank format, and the
MOPAC dat format. PKUDDS can generate several kinds of
rendering styles, including stick, CPK, and ball-and-stick.
Color Plate 1 provides an example of a typical molecular
representation.

In PKUDDS, the ‘Docking’ menu item provides access to
a soft-docking procedure; the ‘QSAR’ menu item accesses
2D-QSAR and the enhanced comparative molecular field
analysis (CoMFA) based on genetic algorithms (GAs); and
the ‘Database’ menu item allows access to the Chinese herb
database (CHD) and related search engines. The package
also contains the usual molecular simulation techniques
including molecular mechanics, molecular dynamics, con-
formational search, and quantum chemistry calculations.
These are invoked from the sub items in the ‘Compute’ and
‘Analysis’ menu items. For molecular mechanics and mo-
lecular dynamics simulations, two types of force fields are
provided, including MM31 and Amber.2 For conformational
searches, GAs are used.3 Most modules, including molecular
mechanics, MOPAC calculations, soft-docking, database
searching, and enhanced CoMFA, can be accessed in inter-
active mode, while other calculations can only be run as
background jobs.

PKUDDS METHODOLOGY

Ligand structure-based methods, including quantitative structure–
activity relationship (QSAR) methodologies and pharmacophore
searches, share the goal of predicting biological activities and
devising common pharmacophore models from the physicochem-
ical properties of ligand structures. In most cases, the structure of
the receptor is unavailable and the only way to find the SAR
models and pharmacophores is from the ligand structures.

Receptor-based methods, including molecular docking and
de novo design, seek to find leads by modeling the molecular
details of drug action or receptor–ligand interactions. With
recent developments in X-ray and NMR techniques, many
protein structures have been solved, providing better informa-
tion about receptor–ligand interactions. With a receptor model
in hand, the next step is normally to build or find potential
ligands that will fit into the active site model. The key to this
step is using 3D information to find or build complementary
structures. A crystal structure of the receptor of interest having
a ligand bound in the active site offers an ideal place to begin,
providing valuable information about the location of important
contacts and the conformation of the bound ligand.

The goal of designing PKUDDS was to develop an inte-
grated system on a personal computer that contains all of the
functionality necessary for structure-based drug design. Major
modules include 2D-QSAR, enhanced CoMFA, molecular
docking, and CHD. The source code of the modules in
PKUDDS is mainly written in C and C11 languages. For our
study, all calculations were performed on a personal computer.
Source code and corresponding parameter files in this study,
including the 2D-QSAR based on GA, the soft-docking proce-
dure, and the conformational analysis based GA, can be ob-
tained from the author upon request.

Figure 1. A flow chart for Peking University Drug Design System (PKUDDS).
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2D-QSAR Based on GA

In ligand structure-based methods, traditional two-dimensional
quantitative structure–activity relationships (2D-QSAR) anal-
ysis is the most widely used and mature technique. QSAR
provides a rational basis for understanding mechanisms of
biological performance and shows how to improve perfor-
mance by altering chemical structures of ligands. The under-
lying assumption is that variations of biological activity of a
series of similar structures can be correlated with changes in
measured or computed molecular properties of the ligands.

One of the most important and difficult problems in tradi-
tional quantitative structure–activity relationship is how to
choose the adequate features for building regression models.
Recent work has suggested that GAs may be useful reducing
the number of features for regression models.4 Rogers and
Hopfinger first applied this method to QSAR analysis,4 and
proved that GAs were very effective tools with advantages over
other methods. GA-based QSAR not only can find a group of
reliable QSAR models from a large number of samples but is
also compatible with nonlinear response surfaces modelled best
by higher-order polynomials, splines, and Gaussian models.
Moreover, from the analyses of the variables used in the
evolution, we may determine which physicochemical proper-
ties are most relevant for activity. Consequently, to construct
better QSAR models with better predictive abilities, we have
added GAs into traditional 2D-QSAR.5,6

The basic steps of QSAR based on GAs are as follows:

Creation of the initial population: In genetic algorithms,
an individual molecule is represented as a linear string, which
plays an analogous role to DNA in evolution. A series of
descriptors is randomly added to the string. Every descriptor is
expressed using two digits; one digit represents its serial num-
ber, and the other represents its function type. The initial
population is generated by randomly selecting some number of
descriptors from the training set. Then these individuals are
ranked according to a fitness score. The “fittest” (elite) indi-
viduals (molecules) in the population are retained.

Crossover operation: Once all models in the population
have been ranked using the fitness score, the crossover opera-
tion is performed repeatedly. In the operation, two good models
are probabilistically selected as “parents,” with the likelihood
of being chosen proportional to a model fitness score; a pair of
children is produced by dividing both parents at a randomly
chosen point and then joining the pieces together.

Mutation operation: After crossover operation, mutation
operations may randomly alter all individuals in the new pop-
ulation and the new model fitness is determined.

Comparison operation: After the crossover and mutation
operation, the newly created population and the elite popula-
tion are compared. If some individuals in the newly created
population are better than some individuals in the elite popu-
lation, these better individuals are copied to the elite popula-
tion. When the total fitness of the elite population cannot be
improved, “convergence” is achieved.

Partial reinitialization: A partial reinitialization proce-
dure is introduced into genetic algorithm by replacing the least
fit 50–80% of chromosomes in the population with randomly
generated ones after a several steps of crossover and mutation

operations. This reduces the likelihood of the GA converging
on a local minimum. Generally, 3–6 reinitializations are
enough to find all relevant QSAR models.

Upon completion, the models with the highest fitness scores
can be obtained. For a population of 200 models, if the data set
contains about 20 features, 500–1,000 cycles are usually suf-
ficient to achieve convergence. If the data set has 30 features,
1,000–1,500 operations are usually sufficient. For a typical
data set, this process takes 10 min to 1 h for a PC (Pentium
150).

Introduction of GAs to 2D-QSAR is simple, direct, and very
effective. Replacing traditional 2D-QSAR with the new proce-
dure based on GA allows the construction of models compet-
itive with, or superior to, standard techniques and makes avail-
able additional information that other techniques do not
provide.

Enhanced CoMFA Based on GAs

Another important method in QSAR is CoMFA. Since its
advent in 1988, CoMFA has been regarded as one of the most
powerful tools for three-dimensional quantitative structure–
activity relationship analysis (3D-QSAR).7 The basic assump-
tion in CoMFA is that the observed biological properties can be
well understood and correlated with the suitable sampling of
the steric and electronic fields surrounding a set of ligands.
Because of its wide use, further enhancement of CoMFA will
be of considerable benefit to drug researchers.

The major obstacles in generating a CoMFA model on a set
of compounds are identifying the bioactive conformation and
performing superpositions. Experimental evaluation of the rel-
ative energy of the bound conformers of drug molecules sup-
ports the argument that it is usually low, but often not the
lowest-energy structure that is the biologically relevant one.
For relatively rigid compounds, the active conformations will
correspond to the lowest-energy conformations. However, for
other relatively flexible compounds, selection of appropriate
conformations and molecular alignments is more problematic.

For a set of flexible compounds, it is difficult or impossible
to manually select appropriate conformations and perform
alignments to get the best CoMFA model. For that reason, we
introduced GAs into conventional CoMFA to automatically
select the conformation for each compound.8 In the enhanced
CoMFA based on GA, the initial population is generated by
randomly selecting one conformer for every compound from
the training set. Then these individuals are scored using a
conventional CoMFA procedure. The cross-validation coeffi-
cient (q2) for every model serves as a fitness score function to
evaluate every individual. After crossover, mutation, and com-
parison operations from the elite population, the models with
the highest fitness score can be obtained.

For a population of 50 models, if the data set contains about
20 compounds, 150–300 cycles are usually sufficient to
achieve convergence. For a typical data set this process takes 5
to 15 h for a PC (Pentium II 266). The enhanced CoMFA used
in this study is under development in our laboratory and is
written in C language. In PKUDDS, the enhanced CoMFA
based on GA can only be partly run using the graphical
interface.
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Molecular Docking

Molecular docking can suggest a favorable configuration for
two molecules forming a complex system. Molecular docking
has been applied to studies of protein–ligand interactions, and
structural information from the theoretically modeled complex
may help us clarify the mechanism of molecular recognition.
Such models can even suggest modifications to lead structures
to improve biological activity.

In our group, we have developed different scoring functions
for two stages of molecular docking. In the first stage, surface
complementarity is considered, while in the second stage only
energetics are considered.9,10

In the first step, the dot surface is generated using the
program written by Connolly.11 The coordinates of the probe
molecule and the target molecule surfaces are randomly rotated
and translated. An initial solution is randomly generated con-
taining six variables: three translational degrees of freedom,
and three rotational degrees of freedom. The three rotational
variables are described by three Euler angles. The position of
the target molecule is fixed and the six variables define the
orientation of the probe molecule. The initial solution is eval-
uated using surface complementarity. The evaluation score is
composed of two parts: the matching score and penalty score of
atomic overlapping.

Fitness 5 Scorematch 2 const 3 Scoreoverlap (1)

where Scorematch is the matching score and Scoreoverlap is the
penalty score. Const is a coefficient balancing the contributions
of the two parts. Const is mainly determined by the dot density,
an important parameter of MS program, which is defined as the
average number of dots per square angstrom area of both probe
and target molecules. In this phase optimization, algorithms,
including Monte Carlo simulated annealing, genetic algorithm,
and tabu (or taboo) search (TS), are performed repeatedly, and
Equation 1 is used to evaluate every solution. After conver-
gence, we arrive at a set of solutions that are then subjected to
more detailed searching using each conformation in the first
stage.

After the surface complementarity phase, energetics are used
as a fitness function. In this stage, only a local search is
performed near these binding sites from the surface comple-
mentarity. Considering the fast convergence of GA near the
best solution, we usually only use GAs in the local search. A
set of chromosomes is randomly generated, each one repre-
senting an orientation. The fitness score of each chromosome is
the interaction energy between the probe and target molecules.
Only Van der Waals energy, electrostatic energy, and hydrogen
bond energy are considered. The force field used is AMBER.2

Nonpolar hydrogen atoms are omitted for simplicity and united
atom types are introduced to evaluate the interaction energy
more efficiently. When the nonbonded interaction energy re-
mains stable in a user-defined region after 20–30 iterations,
convergence is achieved. In this stage, different systems are
treated in different ways. For protein–protein and some pro-
tein–peptide systems, due to the high flexibility of the ligand,
it is very difficult to consider conformational flexibility com-
pletely. Consequently; for relatively large ligands, only three
degrees of translation and three degrees of rotation, and no
conformational freedom, are considered. For protein–small-
molecule systems, a flexible docking procedure is applied,
where the internal conformational flexibility of the ligand is

taken into account and some torsional angles are defined as
variables in the GA minimizations.

The difference between the two stages is that the first one
optimizes the orientations in the whole translational space, but
the second stage restrains the translational vectors near the
associated sites derived from the first stage.

During the process of molecular recognition between a re-
ceptor and its substrate, its potential energy surface is so
complicated that it is impossible to determine the associated
site by carrying out minimization using gradient methods such
as the steepest-descent method and the Gauss-Newton method.
Those methods are prone to falling into local potential wells
from which they have difficulty escaping. Consequently, some
stochastic methods, such as Monte Carlo simulated annealing,
have been introduced into studies of molecular association,
usually with a more complete potential energetic function. We
have used a Simplex method in the minimization procedure and
found that it can escape from local minima more easily than
Gradient methods. Combined with a random search, Simplex
methods can offer a good set of answers to some systems. We
have also compared several heuristic algorithms used in pre-
vious studies12 and shown that genetic algorithms and TS were
both superior to Monte Carlo simulated annealing algorithm.
However, we found that these two algorithms did not perform
effectively in all conditions. It is difficult to solve a docking
problem completely when using only a single algorithm. With
respect to escape from the local minima, TS seems more
effective than GA. However, it converges relatively slowly,
especially near the best solutions. Consequently, a hybrid al-
gorithm combining GA with TS was proposed.10 The hybrid
algorithm was applied to modelling of protein–peptide and
protein–protein complex formation. In our hands our new hy-
brid algorithm is superior to other heuristic algorithms when
used alone. A number of biomolecular systems, including
some bound complexes and some unbound complexes, were
chosen from the Protein Data Bank (PDB) to test our methods.
The results showed that the hybrid minimization algorithm
combining GA with TS could successfully find the correct
solutions near the observed binding modes for those protein
complexes.10

Based on the docking procedure developed in our group, a
database searching strategy has been proposed. The surface
complementarity, energetic considerations, and chemical sim-
ilarity have been used to rank every molecule in the database.
The soft-docking procedure based on surface complementarity
can be operated in PKUDDS in interactive mode.

Chinese Herb Database

For database screening based on molecular docking, we used a
novel database—the CHD. Unlike other commercial databases,
all 3D structures in this database are derived from Chinese
herbs. In some respects the CHD offers advantages over other
commercial databases in that the structures have come from
Chinese medicine and have been proven to be effective for
about five thousand years. Additionally, most Chinese herbs
have been proven to be very safe or possess only minimal side
effects, so the structures in CHD may be safer than those in
other databases.

We have built several searchable 3D databases from CHD
and applied them in pharmacophore searches and molecular
docking. All compounds in CHD are constructed and mini-
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mized using molecular mechanics. Moreover, CHD contains
additional useful information. including molecular name, CA
number, molecular weight, possible medicinal effects, possible
biological receptors, toxicity, and relevant references.

All 3D structures in CHD can be displayed and manipulated
in PKUDDS. Color Plate 25 2 represents one molecule in the
subdatabase of HCV agents. In PKUDDS, text matching, mo-
lecular weight, and substructure matching searches are avail-
able. The CHD database, search engines, and other modules in
PKUDDS make up an integrated CHD information system.

APPLICATIONS OF PKUDDS

The structural analysis of ligands and receptors by PKUDDS
provides useful information for drug design. Moreover, we
have also used PKUDDS to study important processes in the
design of new functional materials.13 We have applied
PKUDDS to diverse problems and the results are very encour-
aging.

Molecular Docking Studies of Two Unbound
Complexes

It has been shown that for bound complexes, surface comple-
mentarity usually is sufficient to obtain correct binding con-
formations. However, the ultimate goal of molecular docking is
to predict protein–protein and protein–peptide interaction with-
out requiring a complexed crystal structure. Compared with
docking of these complexes with crystal structures, calcula-
tions for complexes without crystal structures are more diffi-
cult. During the formation of a complex, some molecules will
undergo conformational changes, so the docking procedure
must be sufficiently flexible to manage conformational
changes, yet specific enough to identify the correct solution. In
some cases, especially when the binding regions between pro-
teins and/or peptides are unknown, complete conformational
searches are not tractable. Even using rigid-body approxima-
tions, it is very difficult to determine the global minimum using
conventional minimization algorithms.

To test our hybrid minimization algorithm and docking

procedure, two uncomplexed systems were studied. One study
employed an uncomplexed trypsin inhibitor (4PTI in PDB) and
an uncomplexed trypsin (3PTN in PDB). The other example
used an uncomplexed serine proteinase (2PKA) and an uncom-
plexed bovine pancreatic trypsin inhibitor (2BPI). The PDB
codes of these two cases are 2PTC and 2KAI. All crystallo-
graphic water molecules were eliminated from the structures.
Some missing hydrogen atoms were added to the complexes
using the molecular design software InsightII,14 with a neutral
sp3 N terminus and a carboxylic (COOH) C terminus assigned
at neutral pH. Before calculations, these structures were min-
imized using the AMBER force field to remove any steric
overlap, with the main chain being restrained.

Table 1 summarizes the results for these two cases, with the
highest ranked correct prediction illustrated in Figure 2. For
2KAI, we found that the best solution from surface comple-
mentarity considerations only did not correspond to the correct
docking conformation. After detailed energetic minimization
and superimposition with the crystal structure of bound 2KAI,
a good solution was found in four of ten solutions from the tabu
list. This suggests that, for some unbound complexes, surface
complementarity alone cannot be used to reliably dock un-
bound complexes. Additional energy minimization is needed to
filter solutions from the surface complementarity. However, we
cannot conclude that the correct solution will have the best
energetic complementarity because, in the docking process, we
do not adequately consider the flexibility of the systems. For
example, in 2KAI, the second solution has the smallest inter-
action energy, but its root mean square deviation (r.m.s.d.) is
larger than 10 Å.

The crystal structures of uncomplexed trypsin (3PTN) and
an uncomplexed trypsin inhibitor (4PTI) have been solved
separately in different systole forms. A comparison of their
structures with the corresponding components of a complex has
indicated that relatively large conformational changes have
occurred, especially in the trypsin inhibitor. After superimpos-
ing only the backbone atoms for 3PTN and 4PTI, the r.m.s.d.
to 3PTN is only 0.323 Å; but for 4PTI, the conformational
change is relatively large, its r.m.s.d is 1.272 Å. This example

Table 1. The results of molecular docking calculations for two unbound protein complexes

PDB
code

Solution
number

Rotational eular angles
(radian) Translation vector (Å) Surface score

Interaction energy
(kJ/mol)

RMS
(Å)

2PTC 1 30.86 335.75 320.38 14.59 11.36212.42 1137.59 2.54
38.19 9.11 31.66 0.34 21.15 21.98 2893.47 2.71

2 78.03 3.37 325.50 1.16 9.19 16.95 872.78 13.56
5.16 104.05 312.32 22.65 1.92 22.92 2552.01 14.98

3 128.51 4.13 260.03 23.62 12.31 16.02 927.55 12.98
103.25 185.54 105.23 1.50 0.95 0.06 2651.855 11.53

2KAI 1 23.34 9.07 335.17 4.66 217.26 2.06 973.20 11.98
34.95 353.03 39.20 21.01 0.28 1.11 2723.95 10.64

2 14.97 0.82 316.42 27.20 7.04 27.72 726.26 15.98
134.93 320.42 150.20 22.00 1.04 20.85 2965.84 17.83

3 12.05 1.16 327.56 21.74 22.49 22.48 703.11 14.87
39.83 334.93 358.23 1.76 0.38 0.33 2232.95 14.99

4 93.84 1.83 231.47 210.45 5.13 21.84 675.05 1.72
94.83 134.83 338.39 1.06 20.66 28.35 2934.87 1.62
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is very challenging, and it has been studied extensively by
several other docking procedures of Kaichalski-Katzir et
al.,15,16whose attempt to dock 3PTN and 4PTI was unsuccess-
ful. Our calculation results listed in Table 1 show that the
correct binding conformation was found by our hybrid meth-
ods. When we superimposed the native complexed crystal
structure of 2PTC with our docking result, the r.m.s.d. is 2.54
Å (only backbone atoms were considered in the calculation of
r.m.s.d.). From Table 1, it is clear that the best solution from
surface complementarity corresponds to the correct solution,
but it is no longer significantly better than the rest of the
solutions. Consideration of surface complementarity alone is
not sufficient to determine which solution is the correct one.
After the second stage of energetic minimization, we found that
the first solution was more energetically favorable and, in fact,
was very close to the correct solution. To understand the
influence of the conformational change and test our minimiza-
tion algorithm further, we docked receptor and ligand from the
complexed protein structure together. For the bound and un-
bound structures, the same parameters were used. However, we
found that the calculation results were much different and the
best solution from surface complementarity for the bound

system was much better than that for the unbound system.
When comparing r.m.s.d., the result for the bound system is
significantly better than that for the unbound system. The
r.m.s.d. for the bound system is only 0.475 Å, much smaller
than that for the unbound system. These differences between
bound and unbound complexes are mainly derived from the
conformational changes during the process of forming the
complex. These conformational changes may greatly affect the
shape of a molecular surface. Minor changes of molecular
surface, especially near the binding site, will greatly affect the
docking results. Our methods only implicitly consider the con-
formation change for these molecules near the binding site,
where the conformations do not alter much. In this circum-
stance, the docking results will produce some deviations from
the real complex. However, for 2PTC, the surface did not
change significantly in the process of complex formation. We
propose that, for most unbound complexes, the best binding
conformation may not correspond to that with the best surface
complementarity or minimum energy. Instead, some binding
conformations with a relatively high surface and energy scores
are likely to be found near the correct binding mode. We
propose that a kind of consensus score involving both surface

Figure 2. The fitted structure of two unbound complexes. (1). (a) Beta-Trpsin complexes with pancreatic Trypsin inhibitor
(2PTC); (b) Kallikrein A complexes with bovine pancreatic trypsin inhibitor. (2) Since the two structures can not be
distinguished in the superimposed forms, the fitted structure is moved away from the crystal structure. For each case, the left
picture is the crystal structure and the right one is the fitted structure.
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complementarity low energy will, in most cases, allow reason-
able predictions of the binding mode for an unbound complex.

2D-QSAR Studies of Some Cinnamamides

It is well known that cinnamamide analogs have a wide spec-
trum of physiological functions, including hypnosis, sedation,
anticonvulsant activity, muscle relaxation, local anesthesia, etc.
Until now, however, very few studies of the relationship be-

tween the chemical structures and biological functions have
been reported.

3,4–methylenedioxycinnamoyl piperidide, which possesses
distinct anticonvulsant activity, has been identified as a poten-
tial anti-epilepsy drug. This compound is a simplified version
of poperine II,. Clinical use has shown this compound to have
good therapeutic effects in many kinds of epileptic patients,
with relatively few side effects. Thirty-five cinnamamide ana-
logs have been synthesized (see Table 2).17 The chemical
structures of these compounds were all modified from 3,4–

Table 2. Structures of cinnamamides derivatives and experiment and calculated biological activity from equation 3

No. ™R X
log(1/C)

obsd.
log(1/C)
calcdb Residueb

log(1/C)
calcdc Residuec

1 3™Cl 0.788 0.510 0.278 0.595 0.193
2 3™F 0.578 0.500 0.078 0.561 0.017
3 4™F 0.458 0.501 20.043 0.458 0.000
4 4™Br 0.314 0.442 20.128 0.500 ™0.186
5 2,4™Cl 0.664 0.651 0.013 0.623 0.041
6a 3,4™Cl 0.550 0.647 20.097 0.621 20.071
7 4™Cl 0.606 0.514 0.092 0.596 0.010
8 4™NO2 0.268 0.324 20.056 0.314 20.046
9 3™NO2 0.324 0.323 0.001 0.310 0.014

10a 3™CF3 0.921 0.815 0.106 0.899 0.022
11 2™CF3 0.723 0.797 20.074 0.899 20.176
12 4™CF3 0.921 0.819 0.102 0.899 0.022
13 3™OH, 4™OCH3 20.272 20.237 20.035 20.272 0.000
14 4™OCH3 0.218 0.174 0.044 0.270 20.052
15 3™I 0.320 0.472 20.152 0.390 20.070
16 4™OC2H5 0.500 0.242 0.258 0.360 0.140
17a 4™OC3H7™n 0.290 0.332 20.042 0.348 20.058
18 4™OC4H9™n 0.180 0.400 20.220 0.268 20.088
19 3™Cl 0.410 0.586 20.176 0.651 20.241
20 3™F 0.495 0.573 20.078 0.366 0.129
21 4™F 0.495 0.574 20.079 0.561 20.066
22 4™Br 0.540 0.517 0.023 0.557 20.017
23a ™HNC4H9™i 2,4™Cl2 0.735 0.732 0.003 0.684 0.051
24 3,4™Cl2 0.977 0.718 0.259 0.779 0.198
25 4™Cl 0.714 0.583 0.134 0.653 0.061
26 4™CF3 0.772 0.892 20.120 0.899 20.127
27 3™CF3 0.989 0.890 0.099 0.899 0.090
28b 3™Cl 0.620 0.570 0.050 0.600 0.020
29 4™F 0.288 0.562 20.274 0.366 20.078
30 4™Br 0.580 0.507 0.073 0.506 0.074
31 ™NHC3H7™i 2,4™Cl2 0.600 0.709 20.109 0.634 20.034
32 4™Cl 0.801 0.572 0.229 0.603 0.198
33 3,4™Cl2 0.498 0.704 20.206 0.629 20.131
34 4™CF3 0.899 0.874 0.025 0.899 0.000
35 3™CF3 0.924 0.875 20.047 0.899 0.025

b These compounds were used as test set and not included in the derivation of equations.
c The values of log(1/C) were calculated using Eq. 4.
d The values of log(1/C) were calculated using Eq. 18.
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methylendioxycinnamoyl piperidide. These compounds were
tested on mice for anticonvulsant activity with the maximal
electroshock seizures test (MES) and the ED50 was calculated
with the Weil method.17 The potency is defined as log(1/ED50)
and is used as the dependent variable in the QSAR study
(Table 1).

Molecular geometries of all compounds in Table 2 were
modeled and minimized using the InsightII molecular simula-
tion software package.14 These structures were fully optimized
and some quantum-chemical parameters were calculated using
the semiempirical AM1 method, available in MOPAC 7.0.
Partition coefficients were measured by using the method pro-
posed by Hansch.18 The aqueous desolvation free energy was
calculated from the hydration shell model developed by Hop-
finger19 and the molar refraction came from Zhang et al.20

The data set contains 35 compounds and 19 molecular
descriptors. The abbreviations for these descriptors are given in
Table 3. In our models, five-term and six-term multiple linear
regression models were constructed. The use of more than six
independent variables for this data set were not considered
because of the increasing risk of chance correlations. For this
data set, populations with 200 individuals were used and the
number of elite populations is defined as 100. After calcula-
tions, the 100 best models for five features and four features
were obtained. The top 16 models selected from the two elite
populations are listed in Table 4. The quality of the models was
indicated by SD,F, Q2, andSPRESS, where n is the number of
compounds used in the fit, SD is the standard error of mean, F
represents the overall F-statistics for the addition of each suc-
cessive term, and values in parentheses are the 95% confidence
limit of each coefficient.

From the correlation coefficients of descriptors in the top
16 models (Equations 1 – 16) and leave-one-out cross-
validations of the models in Table 4, we found Equation 5 to be
the best QSAR model with the best predictive ability. The
predicted log(1/ED50) values for these 35 compounds are listed
in Table 1.

From the statistical analyses of the descriptors used during
the evolution process, the principal factors affecting the anti-

convulsant activity were determined. The important descriptors
were: partition coefficient, molar refractivity, the Hammets
constant of the substituents on the benzene ring, and the heat of
formation of the molecules. To dissect those important factors
more closely, these significant parameters, MR2,3,4, p, Hf and
¥s, were used for constructing linear spline models. Correla-
tion studies have shown that these four features were not
significantly correlated with each other, indicating that they are
all independent features with independent contributions to an-
ticonvulsant activity. The splines used here are truncated power
splines and are denoted with angle brackets. For example,
^f(x)-a& is equal to zero if the value of (f(x)-a) is negative,
otherwise it is equal to (f(x)-a). The regression with splines
allows the incorporation of features that do not have a linear
effect over their entire range. The terms used in the models
were of two functional types: linear polynomials and linear
splines. The five-term models were constructed and evaluated
in terms of their regression coefficient. QSAR analysis began
with a population of 200 random models. The population
converged after 850 crossover operations. The best model from
the elite population is:

log(1/C)5 0.8992 0.823~0.702 MR2,3,4! 2 0.008

~Hf 1 40.318! 2 1.147~0.232 ¥s! 2 1.792~ 2 0.28

2 p!

z ~n 5 30 r 5 0.906F 5 28.800Q2 5 0.744SPRESS

5 0.154! (17)

The statistics of Equation 17 show that this spline model
appears to be much better than the linear regression models in
Table 4. The predictivity of this model also appears good.

From this model, the significance and optimum range of
each parameter can be obtained. Hf will produce a negative
contribution to the anticonvulsant activity when its value is
lower than240.318. High¥s is preferred provided it is no
higher than 0.23. We find only eight compounds in which

Table 3. The parameters used in the QSAR analysis of the data set

Symbol Explanation

logP The hydrophobic coefficient of the molecules
p The hydrophobic coefficient of the substitutes in sites 3, 4, 5
Area The surface area of the molecules
Vm The volume of the molecules
Hf The final heat of formation of the molecules
MW The molecular weight of the molecules
Density The density of the molecule
MR2,3,4 The total molar refraction in site 2, 3, 4
Ss The hammetts constant of the substituents on the benzene ring
Fh2o The aqueous desolvation free energy of the molecules
Apol Sum of atomic polarizabilities of the molecules
homo, lumo The energy of home and lumo orbitors of the molecules
Dip, Dip_x, Dip_y, Dip_z The dipole vector and dipole vector components in x, y, z
Char_N Atomic net charge of the O atom on the amido group
Char_O Atomic net charge of the N atom on the amio group
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electronic effects of substituents on the benzene ring contrib-
uted to anticonvulsant activity. A high value ofp affords high
anticonvulsant activity, but whenp is greater than20.28 there
is no longer an increase with the increments of thep values of
the substituents on the benzene ring. When the value ofp is
greater than20.28, steric and electronic effects become the
most important influences on the anticonvulsant activity. High
values of MR2,3,4 are preferred, as long as the value is below
0.7. Increases in the molar refractivity of the substituents on the
benzene ring favor anticonvulsant activity. This conclusion
differs from that of the linear regression models, which show
that the small substituents on the benzene ring are more fa-
vored. This is not inconsistent, because the influent of MR2,3,4

is not linear over its entire range. When the inhibitor interacts
with its receptor, the steric complementarity is expected to be
optimal. We interpret this to mean that the contact area be-
tween drug and receptor can increase to a certain point where
steric complementarity is optimum, with further increments
depressing the activity due to steric hindrance.

In summary, using GA, we generated a group of multiple
regression models with high fitness scores. These models were
statistically significant and predictive. Steric complementarity
and hydrophobic effects are very significant for the biological
activity, but the contribution of electronic factors is minimal.

We used linear spline models to determine the effective range
for the four principal SAR factors.

CoMFA Study of b-Carboline Ligands

The training set used in our study comprised 18 compounds
selected directly from literature.22 All of these compounds were
b-carbolines, which possess binding affinity to the benzodiaz-
epine receptor (BzR). Before CoMFA calculations, these com-
pounds were modeled and minimized in InsightII molecular
simulation package. The conformational analyses were per-
formed for each compound using the systematic conforma-
tional analysis method. Only conformations with energy values
within 20 kcal/mol of the global minimum were kept. To
simplify calculations, a maximum of 20 conformers were re-
tained for each compound. The partial charges were derived
from the CVFF force field.23

In performing the superimpositions for the CoMFA calcu-
lations, eight atoms were used in a least squares fit: six aro-
matic carbon atoms of the A ring, the indole nitrogen moiety (B
ring), and the nitrogen atom (C ring) ofb-carbolines and
diindoles. The grid used in CoMFA had a resolution of 2.0 Å
and the border of the grid is extended about 2Å from the

Table 4. The top 16 QSAR models generated from training set

1. log(1/C) 5 1.2121 0.343*logP2 0.003*Hf 2 0.007*Vm 1 0.028*Fh2o2 0.014*Dip_z
(n 5 30 Fitness5 0.862 SD5 0.621 F5 13.870 Q2 5 0.588 SPRESS5 0.198)

2. log(1/C) 5 20.4651 0.366*logP2 0.157*MR2,3,4 2 0.002*Hf 2 0.004*Vm 1 0.023*Fh2o
(n 5 30 Fitness5 0.862 SD5 0.754 F5 13.857 Q2 5 0.599 SPRESS5 0.196)

3. Log(1/C) 5 0.2121 0.319*logP2 0.003*Area2 0.011*Vm 2 0.003*Hf 1 0.027*Fh2o
(n 5 30 Fitness5 0.857 SD5 0.813 F5 13.264 Q2 5 0.499 SPRESS5 0.219)

4. log(1/C) 5 1.1251 0.327*logP2 0.003*Hf 2 0.007*Vm 1 0.027*Fh2o
(n 5 30 Fitness5 0.856 SD5 0.821 F5 17.095 Q2 5 0.600 SPRESS5 0.191)

5. log(1/C) 5 0.5661 0.403*logP2 0.330*MR2,3,4 2 0.088*lumo2 0.001*Hf 1 0.011*Fh2o
(n 5 30 Fitness5 0.855 SD5 0.624 F5 13.024 Q2 5 0.501 SPRESS5 0.214)

6. log(1/C) 5 0.4641 0.401*logP2 0.327*MR2,3,4 2 0.001*Hf 1 0.017*Fh2o
(n 5 30 Fitness5 0.853 SD5 0.689 F5 16.614 Q2 5 0.598 SPRESS5 0.192)

7. log(1/C) 5 0.4471 0.384*MR2,3,4 1 0.043*pi 1 0.032*Dip 2 0.001*Hf
(n 5 30 Fitness5 0.852 SD5 0.913 F5 16.580 Q2 5 0.569 SPRESS5 0.197)

8. log(1/C) 5 20.3022 0.600*MR2,3,41 0.479*p 1 0.003*Area2 0.016*Dip_Z1 0.129*Density
(n 5 30 Fitness5 0.852 SD5 0.724 F5 12.709 Q2 5 0.471 SPRESS5 0.225)

9. log(1/C) 5 20.4491 0.012*Ss 20.381*MR2,3,4 1 0.429*p 1 0.030*Dip 2 0.001*Hf
(n 5 30 Fitness5 0.852 SD5 0.834 F5 12.735 Q2 5 0.490 SPRESS5 0.221)

10. log(1/C) 5 20.0882 0.587*MR2,3,4 1 0.487*p 1 0.003*Area2 0.016*Dip_z
(n 5 30 Fitness5 0.851 SD5 0.621 F5 16.462 Q2 5 0.543 SPRESS5 0.205)

11. log(1/C) 5 21.6932 0.539*MR2,3,4 2 0.153*homo1 0.003*Area1 0.002*Dip
(n 5 30 Fitness5 0.851 SD5 0.754 F5 12.571 Q2 5 0.484 SPRESS5 0.217)

12. log(1/C) 5 21.8582 0.539*MR2,3,4 1 0.443*p 2 0.170*homo1 0.003*Area
(n 5 30 Fitness5 0.850 SD5 0.921 F5 16.349 Q2 5 0.531 SPRESS5 0.207)

13. log(1/C) 5 20.2942 0.587*MR2,3,41 0.488*p 1 0.024*Dip 1 0.003*Area
(n 5 30 Fitness5 0.850 SD5 0.723 F5 16.28 Q2 5 0.529 SPRESS5 0.208)

14. log(1/C) 5 20.6882 0.341*MR2,3,4 1 0.402*logP2 0.190*lumo2 0.001*Hf
(n 5 30 Fitness5 0.850 SD5 0.763 F5 16.259 Q2 5 0.595 SPRESS5 0.193)

15. log(1/C) 5 23.2122 0.253*MR2,3,4 2 0.001*Hf 1 0.320*logP2 0.305*homo
(n 5 30 Fitness5 0.850 SD5 0.723 F5 16.250 Q2 5 0.596 SPRESS5 0.193)

16. log(1/C) 5 0.5201 0.149*Ss 2 0.354*MR2,3,4 1 0.397*p 2 0.001*Hf
(n 5 30 Fitness5 0.850 SD5 0.604 F5 16.015 Q2 5 0.548 SPRESS5 0.203)
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molecules. For this data set, 50 populations were used and the
number of elite populations was defined as 10.

Before carrying out calculations using CoMFA based on
GA, a conventional CoMFA procedure was first performed to
ascertain the appropriate components for every model. In this
stage, the lowest-energy conformers for the 18 compounds
were selected. A conventional CoMFA calculation was per-
formed, and the cross-validatedr2 (q2) was calculated for 1–10
components. After a PLS analysis with leave-one-out cross-
validation, the CoMFA model with 2 components withq2 of
0.63 was optimum.

The genetic operator was applied until the total fitness score
of the elite populations could not be improved over a period of
15 evolution operations. The convergence criterion was met
after 260 operations for 2 components. After convergence, a
group of 3D-QSAR models was obtained. Table 5 shows the
six best models. It is clear that CoMFA based on GA allows the
construction of models superior to standard techniques. Theq2

value of these six models from GA minimization are all higher
than those of the model using the lowest-energy conformers,
0.63. Unlike conventional procedures, CoMFA based on GA
provides users with multiple models allowing the application of
more strict statistical tests to choose the best model.

From the best model in Table 6, it can be seen that not all
molecules adopt the lowest-energy conformers. For all 18
molecules, only 8 compounds prefer to adopt the lowest-energy

conformers, while other compounds adopt higher energy con-
formers. The results are not very surprising, because in drug-
receptor recognition process, the structures of receptor and
ligands will change to gain optimum steric and energetic
complementarity.

Design of New HCV Inhibitors

Hepatitis C virus has been identified as the major causative
agent for most cases of non-A, non-B hepatitis. It may establish
a chronic infection that persists for decades, which usually
results in recurrent and progressively worsening liver inflam-
mation and leads to cirrhosis and hepatocellular carcinoma. To
determine the binding site and investigate the interactions
between the receptor and inhibitors, our soft-docking and
flexible-docking calculations were applied to determine the
binding site and the complex structure using available inhibi-
tors. We found that the residues Ser42, Asp81, Lys136, and
Gly137 of NS3 protease may contribute to the interactions
between the receptor and the inhibitors.

With this binding site information, we performed database
searching based on molecular docking to find new potential
HCV inhibitors using the CHD. The best hits were chosen and
tested for their biological activity. Several molecules among
these best hits were proven to possess relatively high biological
activities. More detailed information will be discussed in fur-
ther publications.

Table 5. The structures, experimental and predicted
biological data for compounds in theb-carboline
dataset

No. R1 R2 R3 Nca
PIC50

(Actual)
PIC50

(Predicted)

1 CO
2
CH3 H H 2 0.70 1.28

2 CO2CH2CH3 H H 6 0.70 1.42
3 N¢C¢S H H 1 0.90 1.65
4 OCH2CH3 H H 6 1.38 1.53
5 OCH3 H H 6 2.70 2.08
6 O(CH2)3CH3 H H 20 1.99 1.81
7 OCH3 H H 2 2.09 2.05
8 O(CH2)2CH3 H H 20 1.04 1.57
9 CO(CH2)2CH3 H H 14 0.45 0.53
10 (CH2)3CH3 H H 18 2.39 2.38
11 H H H 1 3.21 2.49
12 CO2C(CH3)3 H H 18 1.00 1.37
13 Cl H H 1 1.65 1.90
14 NO2 H H 1 2.10 1.45
15 CO2CH2C(CH3)3 H H 8 2.88 2.24
16 CO2CH3 H CH2CH3 4 3.88 4.52
17 H H CH2CH3 4 5.40 5.73
18 H H CH2CH3 2 4.09 3.44

a Nc represents the total conformers for every compounds, in the calcula-
tions, the conformers are ranked by their total energy.

Table 6. The predicted biological data from the top
six models from the CoMFA based on GA

No. Conf_1a Conf_2a Conf_3a Conf_4a Conf_5a Conf_6

1 1 1 2 2 2 2
2 3 3 3 2 2 2
3 1 1 1 1 1 1
4 4 5 4 2 1 1
5 3 1 1 4 4 4
6 15 16 14 17 14 18
7 2 2 2 2 1 1
8 12 12 12 15 12 15
9 11 12 12 9 9 9

10 14 18 18 12 9 9
11 1 1 1 1 1 1
12 2 1 2 2 2 2
13 1 1 1 1 1 1
14 1 1 1 1 1 1
15 1 1 1 2 2 2
16 3 3 2 3 1 1
17 2 2 2 2 3 2
18 1 1 1 1 1 1
R2 0.87 0.86 0.84 0.81 0.84 0.85
q2 0.73 0.73 0.72 0.70 0.68 0.68

PRESSb 0.35 0.42 0.44 0.47 0.44 0.45

a The conformer number used in the best model.
b PRESS is the predicted sum of squares obtained from the leave-one-out
cross-validation method.
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