
Abstract In this study, the relationships between the
brain–blood concentration ratio of 96 structurally diverse
compounds with a large number of structurally derived
descriptors were investigated. The linear models were
based on molecular descriptors that can be calculated for
any compound simply from a knowledge of its molecular
structure. The linear correlation coefficients of the mod-
els were optimized by genetic algorithms (GAs), and the
descriptors used in the linear models were automatically
selected from 27 structurally derived descriptors. The
GA optimizations resulted in a group of linear models
with three or four molecular descriptors with good statis-
tical significance. The change of descriptor use as the
evolution proceeds demonstrates that the octane/water
partition coefficient and the partial negative solvent-
accessible surface area multiplied by the negative charge
are crucial to brain–blood barrier permeability. More-
over, we found that the predictions using multiple QSPR
models from GA optimization gave quite good results in
spite of the diversity of structures, which was better than
the predictions using the best single model. The predic-
tions for the two external sets with 37 diverse com-
pounds using multiple QSPR models indicate that the
best linear models with four descriptors are sufficiently
effective for predictive use. Considering the ease of
computation of the descriptors, the linear models may be
used as general utilities to screen the blood–brain barrier
partitioning of drugs in a high-throughput fashion.

Keywords Blood–brain partitioning · ADME · Genetic
algorithm · QSPR

Introduction

In the case of effective central nervous system (CNS)
acting drugs, the knowledge of the penetration of drugs

through the blood–brain barrier (BBB) is critical to
screen potential therapeutic agents and improve the side
effect profile of drugs with peripheral activity. [1] The
BBB is a complex physical and biochemical interface,
which morphologically is based on tightly jointed blood
capillary endothelial cells. [2] For penetration regulated
by the BBB, passive diffusion is the dominant process of
cerebrovascular transport. At the molecular level, the
principal component of the barrier is the lipid bilayer of
the capillary endothelial cell membrane, through which
compounds must diffuse to reach the brain.

In experiments, the relatively affinity for the blood or
brain tissue can be expressed in terms of the blood–brain
partition coefficient, log BB=log(Cbrain/Cblood), where
Cbrain and Cblood are the equilibrium concentrations of the
drug in the brain and the blood respectively. Both in vivo
and in vitro experiments have been conducted that deter-
mined log BB. [3, 4, 5] However, both these methodolo-
gies are laborious, expensive and time-consuming and
require a sufficient quantity of the pure compounds, of-
ten in radiolabeled form, to obtain reliable experimental
data. They are hence not amenable to high-throughput
screening of therapeutic candidates. Thus, theoretical
and computational methodologies to predict the blood–
brain coefficient would have a great impact on drug re-
search and development.

Several attempts to correlate BBB transport with phy-
sico-chemical descriptors, in particular with the oct-
anol–water partition coefficient, as log P, have been re-
ported. [6, 7] However, in some cases, such as in the
brain penetration by H2-receptor histamine antagonist,
log P shows poor correlation with log BB. [8] In addi-
tion to log P, the descriptors concerned with molecular
size and hydrogen bond formation have also been found
to be important contributors to log BB. [9, 10, 11, 12]
Unfortunately, these earlier models were based on a
small set of molecules and were not fully validated by
external prediction sets. Using a larger dataset, Lom-
bardo established a correlation between log BB and the
solvation-free energy from semiempirical quantum
chemical calculations. [13]
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Norinder et al. [14] used MolSurf [15] parameteriza-
tion to calculate various properties related to the molecu-
lar valence region, and combined it with the partial least
squares to latent structures (PLS) method to develop a
QSPR of log BB with three statistically significant com-
ponents. Luco also employed the PLS technique to de-
velop a QSPR based on several topological and constitu-
tional descriptors. [16] More recently, Cruciani et al. ap-
plied a new technique, Volsurf, to transform 3D mole-
cule fields into descriptors and correlated them to the ex-
perimental permeation by the PLS procedure. [17] How-
ever, the PLS method generally appears to strip the
QSPR of explicit physical insight, and the determination
of the principle components of numerous physicochemi-
cal descriptors cannot be easily calculated for an arbi-
trary compound.

Recently, Kaznessis et al. constructed a QSPR with a
physically significant descriptor for 76 structurally di-
verse molecules. [18] Monte Carlo simulations of com-
pounds in water were performed to calculate such prop-
erties as the solvent-accessible surface area (SASA), the
solute dipole, and the hydrophilic, hydrophobic and am-
phiphilic components of the SASA. But in the statistical
analysis, nine strong outliers were identified and subjec-
tively removed in order to gain better correlation. More-
over, the quantity of the QSPR models obtained was on-
ly judged by the coefficient of linear regression, not by
external prediction sets or even cross-validation.

It is well known that BBB permeation depends on
multiple factors. H-bonding capacity, local hydrophobi-
city, molecular size, lipophilicity and even flexibility are
important parameters that play important roles in BBB
permeation. A molecule can be described by many mo-
lecular descriptors. Moreover, many kinds of molecular
descriptors are interconnected, and the information in a
molecule may be duplicated over many of the des-
criptors. Thus, it is relatively difficult for us to select the
most appropriate descriptors to construct the best QSPR
models. In this paper, a QSPR analysis technique based
on a GA developed in our group has been applied to op-
timize the process of descriptor selection. [19, 20, 21]
The QSAR method based on a GA was first proposed by
Rogers and Hopfinger [22] and Kubinyi. [23, 24] QSAR
or QSPR based on a GA can find a group of reliable
QSAR or QSPR models from a large number of samples
very efficiently. Moreover, from the analysis of the vari-
able use as the evolution proceeds, we may obtain the
crucial molecular properties relevant to activity. To the
best of our knowledge, no attempt has been made to use
a GA to derive multiple QSPR models to predict BBB
permeation. The main purpose of this work is to obtain a
group of QSPR models based on simple molecular struc-
tural descriptors that could be used to predict BB ratios
for a wide range of new therapeutic agents.

Materials and methods

Biological data

The brain–blood concentration ratios for the 59 compounds com-
prising the training set were taken from the studies reported by
Young et al. [8] (1–30, part h in Table 1) and Abraham et al. [11]
(31, part h in Table 1, C1–C23, part f in Table 2). In addition, five
acidic compounds were included in the training set (32–36, part i
in Table 1), and their log BB values were taken from Salminen et
al. [10] and Greenwood et al. [25] 
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Table 1 Some compounds used to obtain the training set



Table 1 (continued)
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Table 1 (continued)

Two validation sets of compounds were used in the current
work. The first test set comprises 14 compounds from several lit-
erature sources (B1–B14, part a, b, c, d in Table 3). [11, 13; 26]
The other validation set comprises 23 drugs collected by Salminen
et al. [10] This data set contains acidic, basic and neutral drugs
from various structural classes, and the calculations were per-
formed using the neutral forms of the molecules. 

Molecular modeling and molecular descriptors

Molecular models of compounds were constructed in the SYBYL
molecular simulation package. [27] The initial structures were first
minimized using molecular mechanics with the MMFF94 force
field, [28] and the terminal condition was the RMS of potential
energy smaller than 0.001 kcal Å–1 mol–1. For these flexible com-
pounds, conformational analyses were performed to determine the
most stable conformers.

In the current work, a total of 27 descriptors were used in the
QSPR analysis. These 27 descriptors belong to three categories:
spatial descriptors, structural descriptors and thermodynamic des-
criptors. The following indices concerned with molecular thermo-
dynamic properties were considered: A log P proposed by Ghose
and Crippen, [29] the 1-octanol desolvation free energy (Foct) and
the aqueous desolvation free energy (Fh2o) derived from a hydra-
tion shell model developed by Hopfinger et al. [30] and molar re-
fractivity proposed by Ghose and Crippen. [31]

To quantify the spatial characteristics of the compounds under
study, 17 descriptors were considered, including radius of gyra-
tion, Connolly surface area, molecular volume, molecular density
and 13 Jurs descriptors introduced by Stanton and Jurs. [32] The
partial charges used in the determination of some Jurs descriptors
were computed using the charge equilibration method proposed by
Rappé and Goddard. [33] Several other important structural vari-
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Table 2 Compounds comprising test set 2
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ables were also considered, including the molecular weight, the
number of rotatable bonds, the number of hydrogen bond accep-
tors and the number of hydrogen bond donors. All descriptors
used in this paper can be computed easily and rapidly, and all des-
criptors have obvious physico-chemical and structural meanings.
Parameters that need large computations based on quantum chem-
istry calculations were not considered here. A list of all descriptors
considered in this study is given in Table 4.

Table 2 (continued) Table 3 Compounds comprising test set 1
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Statistical analysis

The QSPR analysis program used in this paper is under develop-
ment in our laboratory. [19, 20, 21] Compared with other tradi-
tional statistical methods, QSAR or QSPR based on a GA uses a
population of many models and tests only the final, fully con-
structed models. The brief procedure of QSPR based on a GA in-
volves five steps: creation of the initial population, crossover op-
eration, mutation operation, comparison operation and partial re-
initialization operation.

According to the GA, an individual should be represented as a
linear string, which plays the role of the DNA for the individual, so

Table 3 (continued) a series of descriptors are randomly chosen as a string. Every des-
criptor is expressed using two digits, one represents its serial num-
ber and another represents its function type. The initial population is
generated by randomly selecting some numbers of descriptors from
the training set. These individuals are then scored according to their
fitness score. An elite population is used to retain the best and dif-
ferent individuals. Once all models in the population have been rat-
ed using the fitness score, the crossover operation is performed re-
peatedly. In the operation, two good models are probabilistically se-
lected as “parents” with the likelihood of being chosen proportional
to a model fitness score. A pair of children are produced by dividing
both parents at a randomly chosen point and then joining the pieces
together. After the crossover operation, the mutation operation may
randomly alter all individuals in the new population, and the new
model´s fitness is determined. After the crossover and mutation op-
erations, the newly created population and the elite population are
compared. If some individuals in the newly created population are
better than some in the elite population, we copy these better indi-
viduals to the elite population. When the total fitness of the elite
population cannot be improved, “convergence” is achieved. After
several steps of crossover and mutation operations, a partial reini-
tialization procedure is easily introduced into the GA by replacing
the lowest 50–80% of chromosomes in the population with random-
ly generated ones in order to reduce the likelihood of the GA con-
verging on a local-optimal minimum.

Upon completion, from the elite population, the models with
the highest fitness score can be obtained. The models in the elite
population are sorted by their fitness scores. In this study, the fit-
ness function was defined as the multiple linear regression coeffi-
cient (r). The reliability of the models was fully tested by their
leave-one-out cross-validated correlation coefficient (q) scores and
the actual prediction on the test sets. Cross-validated q2 is defined
as: q2=(SSY–PRESS)/SSY, where SSY is the sum of squared devi-
ations of the dependent variable values from their mean and
PRESS is the prediction error sum of squares obtained from the
leave-one-out cross-validation procedure.

Results and discussion

The data set contains 59 compounds and 27 molecular
descriptors. The four-term and five-term multiple linear
correlation models were constructed. The use of more
than six independent variables for this data set may not be
appropriate because of possible chance correlation, so
these were omitted from our models. For this data set, 200
populations were used, and the number of elite popula-
tions was defined as 100. The genetic evolutions were ap-
plied sufficiently to guarantee the convergence of the cal-
culations. In the current work, 4,000 genetic operations
were used. Moreover, a partial reinitialization procedure
was applied after 100 crossover operations. After calcula-
tions, the 100 best linear models for four descriptors and
three descriptors could be obtained, respectively.

Usage of descriptors

During the process of genetic evolution, the use of des-
criptors in the elite population changes clearly. Figure 1
shows the change of descriptor use as the evolution pro-
ceeds in the elite populations with four descriptors. The
continuing change in the use suggests that further evolu-
tion of the population may be warranted. In Fig. 1, it can
be seen that after convergence the frequencies appearing
in these models in the elite population are quite different.
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For the QSPR analysis based GA, the appearance re-
flects a feature’s utility in many different combinations
towards building high-score models. Thus, observation
of the descriptor use as it changes is an effective way to
watch the evolution of the elite population, to estimate
when the population has converged and to judge the rela-
tive utility of different descriptors quickly. The conver-
gence was met after about 1,700 operations.

In these descriptors, the frequencies of PNSA-2 and
A log P in the models are the highest, significantly higher
than the other descriptors. The descriptor PNSA-2 is used
in all models, and the descriptor A log P is used in about
99% of the models. Due to the high appearance frequen-
cies of A log P and PNSA-2, it seems that these two des-
criptors play strong roles in the proposed QSPR models.
A log P represents the octanol/water partition coefficient.
The positive value of A log P for this term indicates that a
high octanol/water partition coefficient contributes to
strong brain–blood permeation ability. In fact, for almost
all linear correlation models predicting log BB described in
the literature, the octanol/water partition coefficient was
very important. Previously, several attempts were reported
to predict BB transport with the octanol/water partition co-
efficient. [3] Our data indicate that, although this descriptor
was validated to be very important, it does not show effec-
tive linear correlation with log BB for the 59 structurally
diverse compounds in the training set (see Eq. 1).

(1)

The descriptor PNSA-2 was found in all QSPR models.
This descriptor demonstrates some linear correlation
with log BB (see Eq. 2).

(2)

It is interesting to find that the partitioning of com-
pounds between the blood and brain compartments can
be described effectively by a combination of A log P and
PNSA-2 (see Eq. 3).

(3)

PNSA-2 is defined as partial negative SASA multiplied
by the negative charge. In previous work, the total polar
surface area (TPSA) was used in the QSPR studies of
blood–brain partitioning. [34] It seems that the des-
criptor PNSA-2 is quite similar to the descriptors PNSA-
1 and TPSA. However, in contrast to PNSA-1 and
TPSA, partial charges are considered by PNSA-2. For
the descriptors PNSA-1 and TPSA, whether partial
charges are significantly different for different atoms or
not, the molecular surface areas for different atoms are
weighted equally. But in fact, partial charges are directly
connected with the electrostatic interactions. We believe
that the descriptor PNSA-2, which considers the partial
charges, is better than PNSA-1 or TPSA for describing
the electrostatic interactions between the drugs and the
lipid bilayer during BBB penetration.

Beside these two parameters, the frequency of the des-
criptor RadOfGyration seems relatively high, which is
distributed among about 23% the models. But the remain-
der of the descriptors shown in Fig. 1, and those not
shown, are not well distinguished from each other by
their use. This suggests that the information represented

Table 4 The descriptors used in the QSPR analysis

PPSA-1 Sum of the solvent-accessible surface areas of all positively charged atoms
PNSA-1 Sum of the solvent-accessible surface areas of all negatively charged atoms
PPSA-2 Partial positive solvent-accessible surface area multiplied by the total positive charge
PNSA-2 Partial negative solvent-accessible surface area multiplied by the negative charge
DPSA-1 Partial positive solvent-accessible surface area minus partial negative solvent-accessible surface area (DPSA-1)
DPSA-2 Total charge weighted positive solvent-accessible surface area minus total charge weighted negative solvent-

accessible surface area
RPCG Relative positive charge: charge of most positive atom divided by the total positive charge
RNCG Charge of most negative atom divided by the total negative charge
TASA Sum of solvent-accessible surface areas of atoms with absolute value of partial charges less than 0.2
RPSA Total polar surface area divided by the total molecular solvent-accessible surface area
SASA Total molecular solvent-accessible surface area
TPSA Sum of solvent-accessible surface areas of atoms with absolute value of partial charges greater or equal than 0.2
RASA Total hydrophobic surface area divided by the total molecular solvent-accessible surface area
RadOfGyration Radius of gyration
Area Molecular surface area
Vm Molecular volume
Density Density
A log P Ghose and Crippen octanol/water partition coefficient
Foct Desolvation free energy for octanol
Fh2o Desolvation free energy for water
Apol Sum of atomic polarizabilities
MolRef Ghose and Crippen molar refractivity
Rotlbonds Number of rotatable bonds
Hbond acceptor Number of hydrogen bond acceptors
Hbond donor Number of hydrogen bond donors
MW Molecular weight
PMI-mag Principal moment of inertia
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by some descriptors can be mostly embodied in the des-
criptors A log P, PNSA-2 and RadOfGyration. For exam-
ple, previous work has shown that descriptors relating to
hydrogen bonding were necessary. [11, 12] However, our
calculations show that the descriptor of Hbond acceptor
occurs in 11 equations, and the descriptor of Hbond do-

nor can only be found in three. In fact, Hbond acceptor
shows a close linear correlation with PNSA-2 (r=–0.89),
which means that the Hbond acceptor descriptor may be
replaced by the descriptor PNSA-2. The correlation be-
tween Hbond acceptor and PNSA-2 is not difficult to in-
terpret. We know that an atom that is a hydrogen bond ac-
ceptor is often an oxygen or nitrogen atom with relatively
large negative charges. If a molecule bears many hydro-
gen bond acceptors, it should also have a large negative
PNSA-2 value. This suggests that the information in the
data set is often duplicated over many of the descriptors.
We cannot say that the hydrogen capability of a molecule
is not important in BBB permeation. We can only say that
the hydrogen bonding property of a molecule may be ab-
sorbed in the other descriptors, which may be described
better by another or several other descriptors.

QSPR models from GA optimization

After calculations, 100 models with three descriptors and
100 models with four descriptors were obtained. The top
16 QSPR models with the highest fitness scores are shown
in Table 5. For a QSPR model, the quality of a model can-
not be estimated simply by its multiple correlation regres-
sion coefficient. Thus, the quality of the models, as indi-

Fig. 1 Change in descriptor use for the elite population as the
evolution proceeds with four descriptors

Table 5 The top 16 QSPR models generated using the training set

5 log BB=–0.62– 0.11×Rotlbonds+0.32×A log P+0.0024×Jurs-PNSA-2+0.35×RadOfGyration
n=59 r=0.870 q=0.837 F=42.135 SD=0.408

6 log BB=–0.56+0.35×A log P+0.0033×Jurs-PNSA-2+0.60×RadOfGyration–0.0037×Jurs-PPSA-1
n=59 r=0.865 q=0.837 F=40.407SD=0.415

7 log BB=–0.67+0.33×A log P+0.0035×Jurs-PNSA-2+0.46×RadOfGyration–0.0020×Jurs-DPSA-1
n=59 r=0.865 q=0.836 F=40.304 SD=0.415

8 log BB=–0.68+0.28×A log P+0.0025×Jurs-PNSA-2–0.10×Rotlbonds+0.0032×Jurs-SASA
n=59 r=0.863 q=0.823 F=39.433 SD=0.419

9 log BB=–1.03+0.24×RadOfGyration+0.31×A log P+0.0030×Jurs-PNSA-2+0.55×Density
n=59 r=0.861 q=0.689 F=38.797 SD=0.421

10 log BB=–0.32+0.27×A log P+0.0024×Jurs-PNSA-2+0.21×RadOfGyration+0.016×Foct
n=59 r=0.860 q=0.827 F=38.514 SD=0.422

11 log BB=–0.38–0.11×Rotlbonds+0.27×A log P +0.0024×Jurs-PNSA-2+0.0042×Area
n=59 r=0.860 q=0.817 F=38.437 SD=0.423

12 log BB=–0.29+0.28×A log P +0.0047×Vm+0.0024×Jurs-PNSA-2–0.087×Rotlbonds
n=59 r=0.858 q=0.809 F=37.849 SD=0.432

13 log BB=–0.087+0.018×Foct+0.012×MolRef+0.23×A log P +0.0025×Jurs-PNSA-2
n=59 r=0.858 q=0.819 F=37.841 SD=0.425

14 log BB=–0.72+0.0026×Jurs-PNSA-2+0.38×RadOfGyration–0.00042×Jurs-PPSA-2+0.32×A log P
n=59 r=0.736 q=0.823 F=37.685 SD=0.426

15 log BB=–0.71+0.0027×Jurs-PNSA-2+0.25×RadOfGyration+0.869×Jurs-RPCG+0.31×A log P
n=59 r=0.858 q=0.826 F=37.667 SD=0.426

16 log BB=–0.56+0.0032×Jurs-PNSA-2+0.18×RadOfGyration+0.13×Hbond acceptor+0.35×A log P
n=59 r=0.858 q=0.825 F=37.619 SD=0.426

17 log BB=–0.22–0.088×Rotlbonds+0.27×A log P+0.0016×Jurs-PNSA-2+0.0018×Jurs-TASA
n=59 r=0.858 q=0.812 F=37.341 SD=0.427

18 log BB=–0.18+0.25×A log P+0.0028×Jurs-PNSA-2+0.0040×MW+0.015×Foct
n=59 r=0.857 q=0.814 F=37.224 SD=0.428

19 log BB=–0.83+0.0015×Jurs-TASA+0.0024×Jurs-PNSA-2+0.60×Density+0.26×A log P
n=59 r=0.856 q=0.820 F=36.984 SD=0.429

20 log BB=–0.69–0.0031×Jurs-PPSA-1+0.0034×Jurs-PNSA-2+0.0053×Jurs-SASA+0.29×A log P
n=59 r=0.856 q=0.820 F=36.889 SD=0.429
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cated by SD, F, q, was tested statistically. In the equations
in Table 5, n is the number of compounds used in the fit,
SD is the standard error of mean, and F is the overall F-
statistics. We find that, compared with the two-descriptor
model (Eq. 3), the quantities of the four-descriptor models
listed in Table 5 are improved significantly. It can thus be
concluded that the log BB values can be chiefly explained
by the two descriptors A log P and PNSA-2, but the addi-
tion of the other descriptors can also introduce obvious ef-
fects to the QSPR models obtained.

For the analysis of multiple linear correlation, the da-
ta material must be reduced to fewer and less correlated
variables. Cross-correlated descriptors would prevent the
QSAR model disclosing the actual relationship between
the biological activity and the descriptors. Thus, it is im-
portant to check the uniqueness of the descriptors in a
model. In the current work, the independence of the des-
criptors was checked by calculating the correlation ma-
trix of the parameters in the final models in Table 5. In
the regression equation, r2=0.8 was considered to be the
threshold that would be required for variables to substi-
tute for each other. [35] After correlation analysis, some
descriptors were detected to be highly correlated. These
cannot be considered independent. Finally, Eqs. (6), (8),
(11), (12), (13), (14), (18) and (20) in Table 5 were elim-
inated from the viewpoint of statistics.

The selection of the definitive model was carried out
on the basis of prediction for the compounds comprising
the validation test. Firstly, the compounds in the test set
were predicted using the QSPR model with the best fit-
ness score (Eq. 5 in Table 5). The first validation set in-
cludes the BB ratio of eight H1-receptor histamine an-
tagonist/agonist (B1–B8) and six miscellaneous CNS
agents (B9–B14). The observed and predicted log BB
are shown in Table 6. As may be seen from Table 6, the
predictions for compounds B3 to B14 in the test set are
very good, whereas the log BB values for compounds B1
and B2 are strongly overestimated by this model. It

should be noted, however, that these two compounds
were also overestimated in their BB ratio by the linear
free-energy equations reported by Abraham et al., [36]
the PLS model reported by Luco [16] and the three-des-
criptor linear model proposed by Feher et al., [34] and
may therefore be considered as outliers. For the remain-
ing 12 compounds, the RMS prediction error using
Eq. (5) in Table 5 is 0.29, which is at the level of the ex-
perimental error in the BB determinations.

The second validation test included 23 structurally di-
verse compounds, and their log BB values were taken
from Salminen et al. [10] The observed and predicted
log BB data are shown in Table 7. Inspection of these re-
sults shows that the linear model performs reasonable
well, and only two compounds C14 and C19 were strong-
ly underestimated, and may be considered as outliers. The
RMSE value calculated for the 23 validation compounds
is 0.58, which means that the RMSE value for the re-
duced data set (excluding C14 and C19) is 0.50.

We know that the experimental data of log BB are of-
ten highly heterogeneous and of fairly poor quality. It is
questionable whether a model with a significantly higher
number of parameters would not simply fit the model to
errors in the experimental data. The data set used in the
current work is too limited. Moreover, in Table 5, the fit-
ness scores among these models really do not show large
differences. It is thus very difficult for us to give a deci-
sive conclusion as to which model is the best based on
the fitness score and the predictions for the limited test
compounds. We think that selection of a single model and
the discarding of the remaining models may not be the

Table 6 Experimental and predicted log BB values for test set 1

No. log BB (Exp.) log BB (Pred.)

1a 2b 3c

B1d –1.30 0.42 0.27 0.33
B2d –1.40 0.12 0.03 0.09
B3 –0.43 –0.83 –0.48 –0.42
B4 0.25 –0.28 –0.04 0.05
B5 –0.30 –0.03 0.00 0.019
B6 –0.06 0.12 0.13 0.16
B7 –0.42 –0.12 –0.09 –0.07
B8 –0.16 0.51 0.34 0.51
B9 0.00 0.40 0.22 0.37
B10 –0.34 0.00 –0.11 0.04
B11 –0.30 –0.48 –0.68 –0.58
B12 –1.34 –1.28 –1.34 –1.30
B13 –1.82 –2.09 –1.94 –1.95
B14 0.89 1.07 0.83 1.04
SSEe 1.50 0.84 1.16
rmse 0.35 0.26 0.31

Table 7 Experimental and predicted log BB values for test set 2

No. Exp. Pred.

1a 2b 3c

C1 –0.29 –0.51 –0.55 –0.50
C2 –0.06 –0.31 –0.40 –0.33
C3 –0.10 0.02 –0.06 –0.00
C4 –1.23 –1.38 –0.98 –1.01
C5 –0.31 –0.53 –0.41 –0.43
C6 –0.18 0.39 0.35 0.40
C7 0.11 –0.40 –0.35 –0.25
C8 0.55 –0.14 –0.21 0.01
C9 0.12 –0.83 –0.68 –0.66
C10 –1.42 –1.27 –0.97 –0.92
C11 0.04 0.68 0.37 0.56
C12 0.50 0.03 0.16 0.27
C13 –1.26 –1.66 –1.41 –1.42
C14 0.61 –0.57 –0.60 –0.52
C15 0.39 –0.21 –0.22 –0.04
C16 1.3 0.66 0.54 0.73
C17 1.2 1.17 0.98 1.01
C18 0.36 0.31 0.05 0.22
C19 –0.70 –1.73 –1.25 –1.29
C20 1.23 0.38 0.35 0.37
C21 1.06 0.18 0.17 0.07
C22 0.24 0.02 –0.04 0.14
C23 –0.52 –0.70 –0.27 –0.32
SSE 7.78 6.98 6.11
rmse 0.58 0.55 0.52
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Table 8 Experimental and computed log BB values

Compound Exp. log BB 1a 2b

Calc. log BB Residue Calc. Log BB Residue

1 –1.42 –1.11 0.31 –0.78 0.64
2 –0.04 –0.32 –0.28 –0.38 –0.34
3 –2.00 –1.25 0.75 –1.15 0.85
4 –1.30 –1.00 0.30 –0.83 0.47
5 –1.06 –1.43 –0.37 –1.24 –0.18
6 0.11 –0.18 –0.29 –0.21 –0.32
7 0.49 0.03 –0.52 0.17 –0.32
8 0.83 0.69 –0.14 0.57 –0.26
9 –1.23 –1.60 –0.37 –1.18 0.05

10 –0.83 –1.95 –1.12 –1.66 –0.83
11 –1.17 0.10 1.27 –0.05 1.12
12 –2.15 –1.14 1.01 –0.81 1.34
13 –0.67 –0.95 –0.28 –0.70 –0.03
14 –0.66 –0.85 –0.19 –0.62 –0.04
15 –0.12 –0.69 –0.57 –0.52 –0.40
16 –0.18 –0.13 0.05 –0.24 –0.06
17 –1.15 –0.52 0.63 –0.61 0.54
18 –1.57 –1.22 0.35 –1.14 0.43
19 –1.54 –1.43 0.11 –1.31 0.23
20 –1.12 –1.29 –0.17 –1.02 0.10
21 –0.73 –1.11 –0.38 –0.93 –0.20
22 –0.27 –0.37 –0.10 –0.43 –0.16
23 –0.28 –0.25 0.03 –0.28 0.00
24 –0.46 –0.33 0.13 –0.29 0.17
25 –0.24 –0.05 0.19 –0.04 0.20
26 –0.02 0.06 0.08 0.14 0.16
27 0.69 0.33 –0.36 0.37 –0.32
28 0.44 –0.09 –0.53 –0.05 –0.49
29 0.14 0.20 0.06 0.04 –0.10
30 0.22 0.12 –0.10 –0.03 –0.25
31 –1.88 –1.20 0.68 –1.11 0.77
32 –0.50 –0.86 –0.36 –0.61 –0.11
33 –0.22 –0.02 0.20 0.13 0.35
34 –1.10 –0.34 0.76 –0.24 0.86
35 –0.31 –0.44 –0.13 –0.36 –0.05
36 –1.70 –1.18 0.52 –0.95 0.75
Butanone –0.08 0.11 0.19 0.08 0.16
Benzene 0.37 0.61 0.24 0.45 0.08
3-Methylpentane 1.01 0.76 –0.35 0.62 –0.39
3-Methylhexane 0.90 0.86 –0.04 0.73 –0.17
2-Propanol –0.15 –0.09 0.06 –0.08 0.07
2-Methylpropanol –0.17 0.00 0.17 0.03 0.20
2-Methypentane 0.97 0.78 –0.19 0.63 –0.34
2,2-Dimethylbutane 1.04 0.83 –0.21 0.64 –0.40
1,1,1-Trifluro-2-chloroethane 0.08 –0.18 –0.26 –0.14 –0.22
1,1,1-Trichloroethane 0.40 0.12 –0.28 0.14 –0.26
Diethyl ether 0.00 0.09 0.09 0.09 0.09
Ethanol –0.16 –0.27 –0.11 –0.20 –0.04
Fluroxene 0.13 –0.10 –0.23 –0.05 –0.18
Halothane 0.35 –0.31 –0.66 –0.21 –0.56
Heptane 0.81 0.90 0.09 0.78 0.03
Hexane 0.80 0.79 –0.01 0.66 –0.14
Methane 0.04 0.03 –0.01 0.02 –0.02
Methylcyclopentane 0.93 0.78 –0.15 0.55 –0.38
Pentane 0.76 0.68 –0.08 0.54 –0.22
Propanol –0.16 –0.17 –0.01 –0.09 0.07
Propanone –0.15 –0.07 0.08 –0.08 0.07
Toluene 0.37 0.82 0.45 0.59 0.22
Trichloroethene 0.34 0.22 –0.12 0.25 –0.09
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most advantageous course. It has been proposed that the
outputs of the multiple models can be averaged to gain
the most reliable results. [22] We therefore averaged the
results with the best eight four-descriptor models (bold
equations in Table 5). The top model predicted the train-
ing set with r=0.87; by averaging its output with the eight
best models, the correlation coefficient climbs to 0.88.
The calculated log BB values for the compounds in the
training set averaged from the output with the eight best
models are shown in Table 8, and the relationship be-
tween the observed and calculated log BB values is illus-
trated in Fig. 2. The test compounds were also predicted
by averaging the predicted values with the eight best
models (see Tables 6 and 7 and Fig. 3). The averaged pre-
dicted log BB values for B1 and B2 are also highly over-
estimated, but the RMSE value for the predicted log BB
values of B3 to B14 using multiple models is decreased
to 0.26. The prediction for compounds C1 to C23 by av-
eraging the multiple models is also significantly better
than that by using a single model. The RMSE value for
C1 to C23 using multiple models is 0.55. Using a single
model, compound C14 is highly overestimated, which
may be determined as an outlier, but the predicted value
for C19 is quite reasonable. It is interesting to find that
compound C14 was also strongly underestimated using
the PLS model proposed by Luco [16] 

Here, it should be noted that the QSPR models after
GA optimizations do not consider any molecules in the
data set as outliers. Obviously, removing outliers from the
training set will greatly improve the apparent perfor-
mance of the model. If we define the compounds whose
error of prediction is larger than 1.0, for the values using
the top eight models, two outliers (compounds 11 and 12)
are identified. After removing compounds 11 and 12 from
the correlation, the models in Table 5 could be improved
significantly. For example, for Eq. 5 in Table 5, after re-

moving compounds 11 and 12, r of the model increases
from 0.87 to 0.93, while q increases from 0.84 to 0.89.

(4)

In the earlier literature, researchers tend to eliminate the
compounds with poor prediction from the training set in
order to gain better statistical significance. In the work
of Lombardo et al., two outliers (3 and 12) were re-
moved from the 57-compound set. [13] In the work of
Luco, compounds 2, 10 and 12 were identified as outli-
ers and removed from the training set. [16] In the current
work, the predicted errors for compounds 3 and 10 using
multiple models are not larger than 1.0. If we consider
these two outliers, the resulting four-descriptor model
(Eq. 4) is better than any other models reported using the
similar training sets. However, we believe that any mod-
el using specific descriptors based on a limited data set
may bear some predicted tendency for some types of
compounds. Thus, lacking specific information to ex-
plain why these molecules behave as outliers, their ex-
clusion from the model was not justified in the present
study. Furthermore, the removal of these two compounds
had no major effect on the predictions made for either
test set. The top eight models in Table 5 were rebuilt us-
ing the training set after removing compounds 11 and 12,
and the test compounds were predicted again using these
eight new models. Tables 6 and 7 show the predicted
values after averaging the results using the new models.
It can be seen that, for the compounds B3 to B14, the
RMSE value is 0.31, which is worse than the previous
prediction. In contrast, for the compounds C1 to C23,
the RMSE value is 0.52, which is a little better than the

Fig. 2 Comparison of experimental log BB with calculated
log BB for the compounds in the training set using multiple mod-
els

Fig. 3 Comparison of experimental log BB with calculated
log BB for the compounds in the test set using multiple models.
(Three compounds with predicted error larger than 1.0 are marked
with circles)
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previous predictions. However, overall, the new model
after removing outliers does not have a large effect on
predictions for the test compounds.

It is of interest to evaluate other models suggested in
the literature using a similar data set. The properties of our
four-descriptor model are compared to those of the three-
PCA-component PLS model proposed by Luco [16] and
the three-descriptor model proposed by Feher et al. [34]
(see Table 9). Not considering outliers, our four-descriptor
model has a similar performance for the training set. How-
ever, after removing the outliers, our four-descriptor mod-
el shows better performance than the other two. The pre-
dictions for the test set 1 using multiple four-descriptor
models developed in the current work are only slightly
worse than the results reported by Luco, [16] while much
better than the results provided by Feher et al.’s model.
[34] For the test set 2, our predictions are similar to those
reported by Luco, but also much better than the results re-
ported by Feher et al. However, it should be noted that the
model provided by Luco needs numerous physicochemi-
cal descriptors and PLS analysis, which cannot be easily
and rapidly calculated for an arbitrary compound. The
four-descriptor models provided here are simple and can
be applied in high-throughput screening easily.

Conclusions

This study has shown that QSPR analysis based on a GA
can afford us a group of linear models with high statisti-
cal significance. The change of descriptor use as the evo-
lution proceeds demonstrates that the octane/water parti-
tion coefficient and partial negative SASA multiplied by
the negative charge are crucial to brain–blood barrier
permeability. Moreover, the predictions using multiple
QSPR models from GA optimization gave quite good re-
sults in spite of the diversity of structures, which is better
than the predictions using the best single model. The lin-
ear models developed in the current work are easily cal-

culated and suitable for the rapid prediction of the
log BB values in a high-throughput fashion.
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