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In this paper, QSPR models were developed for in vivo blood-brain partitioning dataBjaif a large

data set consisting of 115 diverse organic compounds. The best model is based on three desedptansi/

water partition coefficient calculated using the SLOGP approaclhy;lbgh-charged polar surface areas
based on the Gasteiger partial charg¢SPSA and the excessive molecular weight larger than 86050

The model bears good statistical significanees 78,r = 0.88,q = 0.86,s = 0.36,F = 81.5. The actual
prediction potential of the model was validated through two external validation sets of 37 diverse compounds.
The predicted results demonstrate that the model bears better prediction potential than many other models
and can be used for I&B estimations for drug and drug-like molecules. Comparison of sever& log
calculation approaches suggests thaPlaglculated by SLOGP can be used as a significant descriptor for
the prediction of molecular transport properties because SLOGP gives the most similar results with CLOGP.
The QSPR model indicates that larger polar surface areas have a more negative contributiBB,tbubg

the absolute partial charges on the atoms surrounded by the polar surfaces should be larger [gdan 0.10
Meanwhile, tight junction membranes limit the size of hydrophilic molecules that can cross the membrane
with a molecular weight of approximately 360, because when a molecule’s weight is larger than 360 it
shows a negative contribution to BB. The computations of molecular surface, partial charge$,lagd

logBB have been accomplished using a program called Drug-BB. Moreover, to improve the efficiency of
the computations of |dg we made an extensive reparametrization of SLOGP, and the newly developed
SLOGP model is only based on simple atomic addition. Further, we developed a set of parameters to calculate
the topological polar surface areBRSA, thus the high-charged topological polar surface aH@TPSA

could be estimated from the 2D connection information of a molecule. Adopting the new strategies, the
estimations of lo§, HCTPSA and lo@B are only based on the topological structure of a molecule and
therefore, can be used for fast screening of virtual libraries having millions of molecules.

INTRODUCTION the knowledge of the penetration of drugs throl®BB is
critical to screen potential therapeutic agents and to improve

The development of combinatorial chemistry and high- . ; ) . .
throughput screening (HTS) gives us more opportunities to the side effect profile of drugs with peripheral activitBBB

synthesize and gives a rapid and effective assay to thousand¥ & complex _physpa! and blochemlpal interface, Wh'Ch IS
upon thousands of compounds in a very short period. As composed of tlght_lyjomted blood capillary endothelial cells.
discovery chemistry produces increased numbers of potential.The e;(terg)t tc_) W.h'Ch drug rgokljecules crgss. ‘TO”.‘ tr;le blozd
drug compounds, the use of ADME (absorption, distribution, Into € lrlaln IIS %overne Y tw?j phyi)llo ogma ybanl
metabolism, and excretion) properties is becoming increas-anatomically related systemBBB and the blood-cerebra
ingly important in the drug selection and promotion prodess. SPinal fluid (CSF) barrier, which form two pathways by
The significant failure rate of drug candidates in late stage Which drug compounds partition between plasma and brain
development is driving the need for predictive tools that can fiSSue. At the molecular level, the principal component of
eliminate inappropriate compounds before substantial time the barrier is the lipid bilayer of the capillary endothelial
and money are invested in testing. It has been estimated thaf€!l membrane, through which compounds have to diffuse
about 50% of such failures are caused by ADME/Tox 0 reach the brain. The membranes involved are tight junction
deficiencie€ Apparently developing effective computational Membranes by brain parechymal cells. Tight junction mem-
mode's to screen ADME properties is Very promising as an branes I|m|t the Size Of hydl’OphIhC m0|ecu|eS that can Cross
early screen for potential drug candidates and for the designthe membrane by paracellular diffusion. The vast majority
of combinatorial libraries. of substances that penetrate a tight junction barrier are
A good example that exemplifies the great utility of a lipophilic molecules that cross by a transcellular rotte.
predictive computational model in drug discovery is a model Experimental data have shown that lipophilic compounds,
for predicting blood-brain barrieBBB) penetration. In the  along with water and small polar molecules, can cross both

case of effective central nervous system (CNS) acting drugsythe blood-brain and blood-CSF barriers. Hydrophilic organic
molecules, including plasma proteins and larger polar

* Corresponding author e-mail: xiaojxu@chem.pku.edu.cn. molecules, cannot penetrate well.
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In experiments, the relative affinity for the blood or brain log BB=0.139-0.148SA+ 0.152ClogP ~ (5)
tissue can be expressed in terms of the blood-brain partition 2
coefficient, 10BB = 109(Coraif Coiood), Which Corain aNdChiood (n =55,r"=0.79,s=0.35,F = 95.8)
are the equilibrium concentrations of the drug in the brain log BB=0.131-0.14PSA+ 0.172MlogP  (6)
and the blood, respectively. Both in vivo and in vitro 5
experiments have been conducted that calculateBBog (n =55,r"=0.77,5s=0.37,F = 86.0)

However, both these methodologies are laborious, expensive,  gome research observed that introducing a descriptor about
and time-consuming and require a sufficient quantity of the hydrogen-bonding ability could improve the quality of the

pure compounds, often in radiolabeled form to obtain reliable 5spR models. Feher et al. proposed the following regression
experimental data, hence not amendable to high-throughput,,;qef2

screening of therapeutic candidatésSo theoretical and
computational methodologies to predict Rwould have log BB=0.4275-0.001PSA— 0.1092 logP —

a great impact on drug research and development. 0.3873,.. (7)
Numerous attempts have been attempted to corrBRE
transport with physicochemical descriptors, in particular with (n =61,r =0.854,s=0.424,F =51)

the octanotwater partition coefficient, 108. Young et al.
proposed a correlation between Ri§jand AlogP (see eq
1).” AlogP is defined as the difference betweenfggand
l0gPcychw Where Py, and Peyow are the octanol/water and
cyclohexane/water partition coefficient, respectively. How- _ H H
ever, in some cases, IBghows poor correlation with I&pB. log BB = 0'055_0'5072(12 0'5002’82 *

For example, Ter Laak et al. found that the brain permeability 0.023 logP (8)
of a series of structurally diverse histamine H1 receptor N N N B

antagonists was better explained bygg rather than by (n =49,r=0.949,5=0.201,F = 136.1)

logP.2 At present it is well-known that Id&8B cannot be __ H H
effectively predicted only based on the hydrophobic param- log BB 0.038—0.7152(12 0'6982'82 *

wheren, is the number of hydrogen-bond acceptors.
Abraham and co-workers constructed the following equa-
tion using a fragment-based schéfié

eters. 0.198R, — 0.687%, + 0.995/, (9)
log BB = 1.889-0.48%log P (1) (n =57,r =0.952,s=0.197,F = 99.2)
(n=20,r =0.831,s=0.439,F = 40.23) whereR; is an excess molecular refraction’ is the di-

polarity/polarizability parameterSo), and S5, are the
solute hydrogen-bond acidity and basicity, respectively; and
Vi is the McGowan characteristic volume. A potential

Kaliszan et al. reestablished the correlation oBBgvith
logP and refined it, employing the molecular weight as an

additional descriptor of molecular bulkiness (see e} e bl t thei dels is that the d ) i
authors indicated that a molecular bulkiness descriptor shoulgProp'em of their models is that the descriptors are not easily
estimated for structurally diverse drug candidates.

be used to better account for nonspecific dispersive properties / ;
P P prop Lomardo et al. established a correlation betweerB®g

of molecules. : . . e
and solvation free energy calculated using semiempirical
log BB= — 0.088+ 0.272Alog P — 0.00112M, (2) quantum chemical calculatiols

(n=33,r = 0.947,s= 0.126,F = 131.1) log BB=0.43+ 0.054AG,, (10)

In addition to hydrophobic parameters, the descriptors (n=55,r=0.82,F = 108)
related with molecular surface properties, molecular size, and
hydrogen bond formation have also been found as important
contributors to loB. Among all these descriptors, polar
surface areaRSA may be the most important one. Using
PSA as the only descriptor, Kelder et al. obtained the
following simple equation for a training set of 45 com-

whereAG,, is the free energy of solvation. This correlation
provides an elegant means for good B&) prediction.
However, computation ofAG,, based on semiempirical
calculations is time-consuming, and moreover, the precision
of the current methods foAG,, prediction is questionable
especially for complicated organic molecules.

30
pounds: Recently, Kaznessis et al. applied Monte Carlo simulations
log BB=1.33-0.03PSA (3) of compounds in water to calculate such properties as the
solvent-accessible surface ar&AGA, the solute dipole, and
(n=45,r*=0.84,F = 229) the hydrophilic, hydrophobic, and amphiphilic components

o . of SASA® Using these parameters, they obtained the
A similar equation was also developed by Clark based on afo|iowing equation

training set of 55 compounds:

log BB = 0.0458-0.234BAC + 0.001MVOL +
log BB = 0.55-0.016°SA ()

31.610HBAC x HBDN"SASA(11)
(n=55,r>=0.71,F = 128,5= 0.41) (n=76,r = 0.97,s=0.173,F = 311.307)

In an effort to account for hydrophobic contributions, Clark where HBAC is the number of hydrogen-bond acceptors;
introduced lo. as an additional descriptét: HBDN is the number of hydrogen-bond donoMYOL is
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the molecular weight; an@ASAis the solvent accessible the other one comprises 23 drugs collected by Salmien et
surface area. The correlation of eq 11 seems very good, butal. (C1-C23in Table 2)%®
in order to gain a better correlation, the authors identified The molecular geometries of all compounds were fully
nine strong outliers and removed them. minimized using a molecular mechanism with a MMFF force
All of the above equations were obtained using multiple field,?® and the terminal condition was set as the RMS of
linear regression (MLR). Meanwhile, many earlier models potential energy smaller than 0.001 kcal*4nol. For these
were based on a relatively small set of molecules and wereflexible compounds, the conformational analyses were
not fully validated by external prediction sets. Moreover, in performed to determine the most stable conformers. The
most papers, to improve the correlations, the authors usuallymodels were then saved into two MACCS/sdf files named
removed some compounds from the training set subjectively. training.sdf and test_set.sdf for further analysis. The MACCS/
Besides MLR, other statistical methods, especially partial Sdf files are available in the Supporting Information.
least-squares (PLS), have been applied in the prediction of Descriptors Used in MLR. (1) Hydrophobicity Descrip-
logBB. Norinder used MolSurf parametrization to calculate tor. Traditionally, calculated values of the octanol/water
various properties related to the molecular valence region Partition coefficient have been used in the estimation of

and combined it with PLS to develop a QSPR of@with molecular transport properties. In this paper, a novel method,
three statistically significant componentsLuco also em- ~ SLOGP, developed in our group, was used to calculate log
ployed the PLS technique to develop a QSPR based on©f organic molecule$: SLOGP estimates Idgby summing
several topological and constitutional descriptdré/ore the contribution of atom-weighted solvent accessible surface

recently, Crivori applied a new technique, Volsurf, to areas$ASAand correction factors. Comparison of various
transform 3D molecule fields into descriptors and correlate |0gP models to the external test set demonstrates that our
them to the experimenta| permeation by Fﬂlgs-jowever, method bears Very gOOd aCCUracy and is Comparable or even
the PLS method generally appears to strip the QSPR frombetter than the fragment-based approaches.
explicit physical insight, and the determination of the  As being well-known, due to adopting a different training
principle components of numerous physicochemical descrip- Set and a different additive strategy a differenfiqmediction
tors cannot be easily calculated for an arbitrary compound. model may generate different predicted values for the same
In our previous work of the relationships betweenBéy organic molecule. In this paper, to_ verify the validity of
of 96 structurally diverse compounds with a great number SLOGP, we compared SLOGP with CLOGP, the most
of structurally derived descriptors, we found thatfogas popular method of log prediction, using the data set studied
very crucial to lo@3B.2° When we constructed the prediction here3® Meanwhile, the predictions by the other four methods,

models of lo®B, the ALOGP approach proposed by Crippen i”CIUdi?sg ALOGP? ALOGPQS’M HINT,**and the Wildman .
et al2! was used to calculate 18gby using the Cerius2 model?® were compared with those of CLOGP systemati-

molecular simulations packageThe dependence on the cally. ALOGP method is a direct, easy-to-computerize atomic

commercial software prevents us from developing a proce- constant approach to predict B@nd is shown to exhibit a
dure to estimate |88 as an automatic fashion. In this article, T€latively robust performance. The difference between ALOGP

we like to present the results of our recent study by and ALOGP 98 is the usage of different atomic hydrophobic

introducing a new loB parameté® and developing a simple ~ Parameters. Idg values by ALOGP and ALOGP98 were
predictive model ofBBB penetration. For an efficient obtam_ed using the Cerius2 molecular_smulatlon pacl%_?:\ge.
computational model, besides precision, speed should alsdi!NT is @ program designed for quantifying and visualizing
be considered, because to be a high-throughput-screening!Ydrophobic and polar interactions. The fogalculation
tool it is expected to process a large number of compoundsPerformed by HINT is based on the hydrophobic fragment
in a short period of time. To make the prediction of B constant approach of Hansch a_nd I__eo. In add|t|(_)n, there_ are
more efficient, we made an extensive reparametrization of @ NUmMber of *factors” and application rules, which modify
SLOGP, and the newly developed SLOGP model is only the .total partmon constant depending on a specific bond,
based on simple atomic addition. Further, through adopting €hain, or branching, etc. I&gvalues by CLOGP and HINT
the definition of topological polar surface area, theBéyg Wergcalculat_ed using the Sybyl molecular SIr_nuIatlon pa(_:k-
calculation is only based on the topological structure of a @9€:* The Wildman’s model is based on simple atomic

molecule and can be accomplished very rapidly and easily. addition. The Wildman'’s loB values were calculated using _
a homemade program. The atom typing rule and hydrophobic

METHODS pa]lcrgr;eters for the Wildman model were obtained from
ref 33.

Data Set.The quality of a QSPR model depends strongly  (2) Hydrophilicity Descriptor. Due to the physical nature
on the size and quality of the data set used. Variety of the lipid bilayer, organic molecules, which can form
experimental protocols have been applied in the measurementavorable hydrogen-bonding or electrostatic interactions with
of logBB. To let the data used in this paper bear good the lipid bilayer, may have great difficulty wittBBB
comparability, all data are based on in vivo measurementspenetration. To form an effective hydrogen bond or favorable
taken from rat studies. Besides the compounds used in ourelectrostatic interactions, a molecule should have high
previous work® we added 20 new compounds collected from electronegative atoms (oxygen, nitrogen, etc.) that are
different articles*~2” The whole data set includes 115 diverse exposed on the molecular surface. Indeed it has been proven
organic compounds, which was divided into a training set that polar surface are®8A is a very significant descriptor
of 78 compounds (Table 1) and two test sets of 37 for drug transport properties such as human intestinal
compounds. The first test set comprises 14 compounds frompermeation and blood-brain barrier penetration. In this paper,
several literature source81—B14 in Table 2)'31527and the polar atoms include all oxygen atoms, nitrogen atoms,
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Table 1. Compounds Used To Obtain the Training Set

Hou AND Xu

l A

o]
\;SI N|)‘j/\(j\
\ N N)\N N/
H H
Br

ID and name ID and name ID and name
1. icotidine 2. temelastine BBcpd16 (guanidinothiazole der.)
| <] NH,
| X © N | | X )\ /4 \n/
N/ N)|\N N/

4. BBcpd58 (guanidinothiazole der.)

NH,

ps

5. SK&F 93319

6. didanosine

N/\N

o{<n

X

7. BBcpdl10
/

—N

8. BBcpd57 (guaidinothiazole der.)

H;N)iN/Z\B\O/n\IO‘/

9. BBcpd17 (ranitidine analog)

ON

/l\/Q\/s\/\ND

10. salicylic acid

O, OH

11. lupitidine

X
J D
! 2
e

12. tiotidine

NH, s \ Nl/CN
HQN)\N/Q\/S\/\N)\#/

13. BBcpd60 (ranitidine analog)

OaN,

|\/©\/
PSS

14. zidovudine

15. BBcpd12 (cimetidine derivative)

N\ s/\/N n
| 1
/ Br N

16. BBcpd13 (cimetidine derivative)

§ ON
E;\/s D
N NN\ N

17. acetylsalicylic acid

18. BBcpd20 (ranitidine analog)

SUS PPN

19. Y-G19

20.Y-G14

Nl

21.SKF101468

NN

22. BBcpd19 (ranitidine analog)

PP

23. BBcpd18 (ranitidine analog)

/l\/©\©/ nﬁ)

24. BBcpd21 (ranitidine analog)




ADME EVALUATION IN DRUG DISCOVERY. 3
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ID and name

ID and name

ID and name

25. valproic acid

/;.IOH/\

26. BBepd15 (guanidinothiazole der.)

HZN)\QNAQ\Q

27. 2-methylpropanol

v

28. ethanol

\/OH

29. 1-propanol

L\

OH

30. 2-propanol

HO

31. propanole

\7/

o)

32. carbamazepine

33. BBcpd14 (cimetidine derivative)

N oN
()\/S D@
N \/\N §

34. butanone

o]

NEN

35. SKF89124

HN,

36.1CI 17148

37. BBcpd22 (ranitidine analog)

OSSN

38. diethyl ether

NN

39. nevirapine

T

40. nitrogen

N=N

41. nitrous oxide

-N——=N—/=0
+

42. methane

H

43. 1,1,1-trifluoro-2-chloroethane

:

44, physostigmine

[0)

\N/KO
H

45. clonidine

D

46. di-(2-fluroethene) ether

NN

47. fluroxene

/
e
\/°Q<:

48. zolantidine (ranitidine analog)

QDY
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Table | (Continued)

Hou AND Xu

ID and name

ID and name

ID and name

49. BBcpd26 (ranitidine analog)

QDY

50. enfluane

F, FF

A i
F o><<
F

51.Y-G20

"N
Sy

ol

52. teflurane

53. SB-222200

£

54. trichloroethene

55. halothane

56. sulfur hexafluoride

F

F\l/F

F/I\F
F

57. benzene

~
O

58. toluene

59. hydroxyzine

& NQNJ—/J
)

60. 1,1,1-trichloroethane

Cl
4’70
Cl

61. isofluane

62. BBcpd24 (ranitidine analog)

63. mepyramine

I O
OV PP A
F 0)\’<F N . /\/\” /KN
F
\O
64. BBcpd23 (ranitidine analog) 65. pentane 66. hexane
Z
| | \/\/ \/\/\
NN,

67. heptane

NN

68. amitryptalline

69. 3-methylhexane

PPN

70. methylcyclopentane

E>_

71. 2-methylpentane

W

72. phenserine

~
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ID and name

ID and name

ID and name

73. terbutylchlorambucil

74. 3-methylpentane

A

75. 2,2-dimethylbutane

>

77. desipramine

78. trifluoroperazine

30 a0 A0
" "

\ N

and sulfur atoms. By definitiorR SAevaluation requires 3D logBB Prediction based on Topological StructuresThe
molecular conformation and atomic surface area. Here, calculations of lo§ andHCPSAneed surface area calcula-
molecular solvent accessible surface areas were calculatedion based on the 3D representation of a molecule, so the
using the MSMS prografhand the probe radius was set to computations of these two descriptors may be relatively time-
0.5 A, according to the definition in SLOGP, and thus the consuming. To improve the efficiency of IB§ prediction,
calculations of lo§ andPSAcan share the same output of we tried to calculate these two descriptors only based on
surface calculation. It should be noted that the surface area®2D topological information. To improve the calculation
of hydrogen connected with the polar atoms are included in efficiency of log? and HCPSA we adopted the following
PSA strategies:

Generally, as a polar atom, it should be highly electro- (1) Reparametrization of SLOGP. In version 1.0 of
negative and possess high charge density. If the chargeSLOGP?? logP is calculated by summing the contribution
density on an oxygen atom or a nitrogen atom is very low, of atom-weighted solvent accessible surface ar&#sSg
this atom may not produce a strong hydrogen bond or and correction factors, so 3-D structure and molecular surface
favorable electrostatic interactions with other polar atoms. calculations should be necessary. In the revised version of
Thus, to make a more close connection between the polarSLOGP, lodP of a molecule is calculated from the additions
atom and the partial charge, we used a new definition namedof atoms and correction factors, and it can be described by
“high-charged polar atom”. According to our definition, only
polar atoms with high charge densities belong to high-
charged polar atoms. Here, the Gasteiger method was used
to calculate the partial charg&sand thePSAsurrounding
those polar atoms with absolute partial charges larger thanwhereb; andc; are regression coefficients; is the number
0.1e| was treated as the high-charged polar surface areaof theith atom type; and; is the number of thgh correction
(HCPSA. In Gasteiger calculations, only the connectivities factor.
of the atoms are considered so only the topology of a Because we do not connegASAwith logP, we may need
molecule is important. to define more atom types to represent the atoms with

The number of hydrogen-bond donors and acceptors weredifferent exposures to solvent. The final atom classification
obtained using the Patty ruléswhich were interpreted by  system includes 112 atom types, not 100 in SLOGP v1.0.
OELIB.%® We defined a parameter file to store features of The atom types were determined by using the SMARTS
atoms that can form hydrogen bonds. These atoms weresystem. In SLOGP v2.0, we also considered two correction
divided into three categories: hydrogen-bond donor (HBD), factors, including hydrophobic carbon and intramolecular
hydrogen-bond acceptor (HBA), and polar atom (POL) that hydrogen bond, implemented in SLOGP v1.0. More detailed
has a lone electron pair and a polar hydrogen atom and cardescriptions of these two correction factors can be found in
be treated as a hydrogen-bond donor or a hydrogen-bondref 23. The data set used for parametrization includes 1850
acceptor at the same time. organic molecules, the same as those used in our previous

(3) Molecular Bulkiness Descriptors. It is obvious work. The new atom typing rule and the corresponding
that the rate of passive paracelluar transport depends stronghydrophobic contributions can be found in SLOGP v2.0.
ly on molecular size. The simplest descriptor concerned (2) High-Charged Topological Polar Surface Area
with molecular size is molecular weighmV). Certainly, (HCTPSA). Recently a new protocol to gener&8Abased
MW usually correlates very well with other two descrip- solely on molecular topological information was proposed
tors: molecular volume and molecular surface area. Here,by Ertl et al®® The procedure calculateBSA from 2D
molecular volume and molecular solvent-accessible sur- molecular bonding information only. The result was termed
face area $ASA were estimated using the MSMS pro- topological polar surface aredRSA. In Ertl's work the
gram3 target for fitting is the van der Waals surface area, while in

logP = z bin, + zchj (12)
I ]
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Table 2. Compounds Comprising the Test Sets

Hou AND Xu
ID ID ID
Bl B2 B3
/>\/\ ] /\'/\/ _\_N
N / _=N z NH
B4 B5 B6
\k ¥ l
N AN N | A ~
H | /N /N
{o]
N
B7 B8 B9
NY\/NHZ S
L A0 | LD
i N N J\
\=N o NH,
B10 Bl11 B12
A N /N\o N /”\o
g0 | o | o
P LI \
B13 B14 Cl1
N N~—o it
< 4
- LD 0
: oy P
"\ \ |
2 C3 C4
O, —_
/ \ P
/ =N
al= ad NN
&\ N | 1) Y N 7
" \ ’ /\/ N—
S
C5 C6 Cc7
o cl
O~ : >
N cl N
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ID ID ID
Cl11 C12 C13
Cl 0,
[ ( |
N o o
O g - )
}‘\)QN/ /O\Q\/N 4 \
cl o
Cl4 C15 Cl6
| L O
SVaw _ &
N N, \ \
. N N\/\/
J 70 afs
C17 C18 C19
N F
N N
O N/\/Q/O
Oh e AT T O
o N /
C20 C21 C22
L l
s K\/ ~ \@\
C23
N//o
;

the current work the solvent-accessible surface area was usedACD-3D).*° Each compound should satisfy the rule of 5
Certainly, different procedures of surface calculations, dif- proposed by Lipinskt! such as molecular weight smaller
ferent van der Waals atomic radii, or even different calcula- than 600, CLOGP smaller than 5.0, number of hydrogen-
tion parameters may generate differ&8A So, here, we  bond donors smaller than 5, and number of hydrogen-bond
developed a new set of atomic parameters to calcUB&A. acceptors smaller than 10.

PSAcalculated by MSMS was used as the target in fitting  (3) High-Throughput logBB Prediction. After reparam-

(see eq 13)

PSA= Zni.s

etrization of SLOGP and@PSA the calculations of log and
HCTPSAare based on 2-D molecular bonding information
(13) only, so using lo®, HCTPSA andMW, we developed a new
regression model which can predict B as a high-
throughput fashion. All compounds manipulation, processing

wherePSAis the traditionally calculate®SAbased on 3D  of SMARTS, input of parameters, identification of polar
molecular structure using MSMSy is the frequency of  fragment, estimation of Idg HCTPSA and lodB, were
fragment in the molecule; and is the surface contribution  accomplished by using an in-house program named Drug-

of typei.

HBB written in C++.

The definition for atom types using in fitting is based on
SMARTS, and all types are united-atomic model (see Table RESULTS AND DISCUSSION
3). The training set includes 20 000 organic compounds The program, Drug-BB, was developed irt-@. The
randomly selected from the Available Chemical Database program reads a single molecule or multiple molecules
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Table 3. Atomic Contributions (&) to PSA

contri- contri-
SMARTS bution SMARTS bution
[#8;H1] 24584  [n;HOJ(:*)(:*)—* 6.203
[#8](—*) —* 12.475 [n]:[n] 15.242
[#8;r] 18.205 [NH3] 36.928
[#8]=* 17.867  [N;HO](*)(=*)=* 0.000
[#8]—N=0 23.875  [N;HO)E*)(—*)=* 0.000
[#8]=N—-0O 23.875
[0] 24.854  [#16;H1] 46.908
[#16;HO](—*) —* 29.273
[#7;H2] 33.645  [#16F* 39.344
[#7;H1]=* 19.902 [#16F0 25.149
[#7;H1](—*)—* 7.619 [#16]&%)=" 5.915
[#7;HO)(—*)(—*) —* 0.000 [s] 35.737
[#7;HO](—*)=* 14.200
[#7;HOJ#* 19.924  [#15]E*)(—*)—* 16.564
[n] 17.807  [#15]¢*)=* 25.376
[n;r5]° 17.097 [#15]6%)(—*)(—*=* 5.261
[nH] 29.817 [#15H1)E%)(—*)=*  20.123

a Description: * represents any atom; n represents aromatic nitrogen;
0 represents aromatic oxygen; s represents aromatic stlfepresents
a single bond:= represents a double bond; # represents a triple bond;
: represents an aromatic borfddxygen in a ring¢ Nitrogen in five-
membered ring.

(represented in single SYBYL/mol2 file, single MACCS/
mol file, SYBYL/mol2 database file, or MACCS/sdf database

Hou AND Xu

differences. For example, the Bgralues of compound 6
predicted by CLOGP, SLOGP, the Wildman model, HINT,
ALOGP, and ALOGP98 are-1.92, —1.05, —0.54, 1.57,
—0.10, and—1.52, respectively. From the mean square
deviation and the linear correlation coefficient, SLOGP gave
the most similar results with CLOGP. Because the experi-
mental lod® values are unavailable, we cannot give a
conclusion that for each compound SLOGP gives the best
prediction, but the comparison at least demonstrates that
SLOGP yields acceptable estimations for the studied com-
pounds.

(2) HCPSA We first carried out a simple linear regression
of the 78 compounds in the training set usigSAas the
only descriptor. The resulting equation and statistics are

log BB= 0.571-0.0156°SA
(n=78,r =0.753,5= 0.490,F = 100.4)

(15)

Compared with the Clark’s results shown in eq 3, our
fitting is worse. The main reason for the difference of fittings
given by us and Clark is the usage of different training sets.
In Clark’s work, they used a training set of 55 compounds,
but in our work, we used a training set of 78 compounds.

When a drug molecule passes through brain parechymal
cells, different polar atoms should give a different unfavor-

file), performs atom typing, charge assignment, and surfaceable contribution to I0BB, even if these two atoms bear

estimation, and then calculates RRgHCPSA,and logBB.
The program, Drug-HBB, was developed int@. The
difference between Drug-HBB and Drug-BB is that Drug-
HBB calculates l0§, HCTPSA and lo@B based on mo-
lecular topological information only. The program, SLOGP
v2.0, was also released. Now, SLOGP can give twd’log
values for each molecule based on two different additive
models.

Descriptors in QSPR Models. (1) lo@. It was found that
logP was an important factor although itself correlates with
logBB poorly. Here, a direct fitting of l0g values with logB
of the compounds in the training set produced raof
approximately 0.5:

log BB= — 0.552+ 0.236 logP
(n=78,r =0.492,5s= 0.649,F = 24.3)

(14)

In the past tremendous efforts by theoretical chemists led
to several useful computational methods for estimatinglog
of organic compounds. Among all these Rgnethods,

similar PSAbecause the partial charges on these two atoms
may exist quite difference. So considering the effect of partial
charges, we divided theSAinto two categories according

to the values of partial charges: high-charged polar surface
area HCPSA and low-charged polar surface aré£PSA.
HCPSAIs thePSAgiven by polar atoms with absolute partial
charges larger than Qdl, andLCPSAIs that given by polar
atoms with absolute partial chargers smaller thareQ. W
constructed a correlation between Bigywith HCPSA and

the resulting equation is

log BB= 0.589-0.017HCPSA
(n=78,r=0.779,s= 0.468,F = 117.4)

(16)

As shown in egs 15 and 16, using the new parameter, the
correlation coefficient and the Fisher value were improved
obviously. This parameter provides a solid physical picture
of the molecular mechanisms, indicating that only high-
charged polar surface areas impact BBB permeation.
Here, the cutoff value for the calculation 6fCPSAwas

CLOGP is the oldest computational procedure, actively defined as 0.1. In fittings, a systematical search was used to
managed, commercially distributed, and perhaps the mostchange this value from 0 to 0.2 using a step of 0.01, and
widely used. Here, the SLOGP model developed in our group finally we found that the value of 0.1 could generate the
was used, so we expected to know if SLOGP could give best linear model. The values BISAand HCPSAfor the

effective predictions for those compounds in Tables 1 and €0Mpounds in the training set are listed in Table 4. From
2. The correlation between the Bgvalues predicted by Table 4 it can be fpund that 63 compounds have identical
CLOGP and those by SLOGP are shown in Figure 1a. From PSAandHCPSA while the other 15 compounds have smaller
Figure 1a, it can be found that the Rgalues predicted by ~HCPSAthanPSA , _
these two approaches show high linear correlaticn 0.93). _ Then, we considered both IBndHCPSAIN MLR. Itis
Furthermore, we predicted the Bgalues using four other interesting to find tha? the partitioning of compounds betv_veen
approaches including ALOGP, ALOGP98, HINT, and the the b_Iood and bran_w compartments can be effectively
Wildman model. The linear correlations of Bgy these ~ described by a combination of IBgand HCPSA
four methods and those by CLOGP are 0.84, 0.92, 0.78, and
0.90, respectively. As shown in Figure 1, the Rogalues
predicted by these six approaches indeed exist with obvious

logBB = 0.219+ 0.139logP — 0.0158{CPSA (17)
(n=78,r = 0.827,s= 0.422,F = 81.1)
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Figure 1. Correlation between the calculation logP values by CLOGP with (a) SLOGP, (b) ALOGP, (c) ALOGP98, (d) HintLOGP, and
(e) the Wildman’'s model.



2148 J. Chem. Inf. Comput. Sci., Vol. 43, No. 6, 2003 Hou AnD Xu

Table 4. Experimental and Computed IB8 Values for Compounds in the Training Set
ID logBBey, logP PSA  HCPSA MW, logBB. residue ID lo®Bey, logP PSA HCPSA MW logBB. residue

—2.00 172 76.79 76.79 19.46 —0.88 —1.12 40 0.03 0.00 67.06 0.00 0.00 0.08 —0.05
—1.88 3.01 6936 69.36 8236 —141 -—-047 41 0.03 —0.57 80.98 0.00 0.00 —0.03 0.06
—1.57 0.85 99.74 89.70 0.00 —0.96 —0.61 42 0.04 0.53 0.00 0.00 0.00 0.19-0.15
—1.54 1.02 125.07 109.41 0.00 -1.19 —-0.35 43 0.08 1.90 0.00 0.00 0.00 0.46—-0.38
—1.30 355 58.74 58.74 8859 —1.25 —-0.05 44 0.08 0.99 41.68 41.68 0.00 —0.28 0.36
—-130 -1.05 9257 9257 0.00 —1.37 0.07 45 0.11 1.92 3544 3544 0.00—-0.01 0.12
—-1.17 0.44 85.06 85.06 0.00 —0.98 —0.19 46 0.13 1.19 7.00 7.00 0.00 0.22-0.09
—1.15 0.92 103.47 93.40 0.00 —0.99 —-0.16 47 0.13 1.62 7.56 7.56 0.00 0.30-0.17
—1.12 1.88 83.65 79.01 0.00 —0.61 —0.51 48 0.14 4.84 3292 3292 2154 0.29-0.15
10 -1.10 221 5749 57.49 0.00 —0.26 —0.85 49 0.22 458 41.30 41.30 5.48 0.35—-0.13
11 -1.06 138 69.25 69.25 53.55 —1.33 0.27 50 0.24 278 8.15 8.15 0.00 0.52—-0.28
12 -0.82 —-0.32 136.16 118.01 0.00 —1.57 0.75 51 0.25 —0.21 43.93 43.93 0.00 —0.55 0.80
13 -0.73 3.66 80.50 77.09 54.53 —1.00 0.27 52 0.27 2.13 0.00 0.00 0.00 0.50-0.23
14 -0.72 -0.97 133.67 99.88 0.00 —1.45 0.73 53 0.30 5.61 34.22 3422 2049 0.44-0.14
15 -0.67 3.10 69.05 69.05 0.00 —0.24 —-0.43 54 0.34 2.26  0.00 0.00 0.00 0.53-0.19
16 —0.66 216 8375 79.52 0.00 —0.56 —0.10 55 0.35 2.75 0.00 0.00 0.00 0.63-0.28
17 —0.50 122 6461 6461 0.00 —0.55 0.05 56 0.36 3.03 0.00 0.00 0.00 0.68—0.32
18 —-0.46 152 39.37 39.37 0.00 -0.15 —-0.31 57 0.37 2.06 0.00 0.00 0.00 0.49-0.12
19 -043 227 4122  41.22 0.00 —0.02 —-0.41 58 0.37 2,50 0.00 0.00 0.00 0.58-0.21
20 —0.42 0.49 2521 25.21 0.00 —0.16 —0.26 59 0.39 2,72 3323 33.23 14.91-0.04 0.43
21 —0.30 206 37.60 37.60 0.00 —0.02 —-0.28 60 0.40 2.39 0.00 0.00 0.00 0.56—-0.16
22 —0.28 296 8281 79.44 0.00 —0.40 0.12 61 0.42 262 7.64 7.64 0.00 0.50-0.08
23 —0.27 3.00 8186 77.82 0.00 —0.37 0.10 62 0.44 3.28 334 33.4 0.00 0.28 0.16
24 —0.24 3.29 36.47 36.47 0.00 0.24 —0.48 63 0.49 2,58 18.09 18.09 0.00 0.35 0.14
25 —0.22 2.09 4428 44.28 0.00 —0.10 —-0.12 64 0.69 3.24 3322 3322 0.00 0.28 0.41
26 —0.18 173 7257 62.45 0.00 —0.42 0.24 65 0.76 296 0.00 0.00 0.00 0.67 0.09
27 —0.17 057 23.98 23.98 0.00 —0.13 —-0.04 66 0.80 3.47 0.00 0.00 0.00 0.77 0.03
28 —-0.16 —-0.10 2493 2493 0.00 —0.27 0.11 67 0.81 3.97 0.00 0.00 0.00 0.87—0.06
29 —0.16 0.24 2494 2494 0.00 —0.20 0.04 68 0.83 443 454 4.54 0.00 0.90—-0.07
30 -0.15 0.30 23.81 2381 0.00 —0.18 0.03 69 0.90 3.98 0.00 0.00 0.00 0.87 0.03
31 —-0.15 -0.09 2056 20.56 0.00 -0.21 0.06 70 0.93 3.16 0.00 0.00 0.00 0.71 0.22
32 -0.14 277 4334 43.34 0.00 0.05-019 71 0.97 3.46 0.00 0.00 0.00 0.77 0.20
33 —0.12 3.93 8153 79.23 8.46 —0.33 021 72 1.00 3.30 36.56 36.56 0.00 0.24 0.76
34 —0.08 0.44 1873 18.73 0.00 —0.08 0.00 73 1.00 4.03 19.64 19.64 0.32 0.61 0.39
35 —0.06 162 60.90 60.90 0.00 —0.42 0.36 74 1.01 3.47 0.00 0.00 0.00 0.77 0.24
36 —0.04 -0.06 7417 64.04 0.00 —0.79 0.75 75 1.04 3.45 0.00 0.00 0.00 0.77 0.27
37 —0.02 178 3458 3458 0.00 —0.03 0.01 76 1.07 401 432 4.32 0.00 0.82 0.25
38 0.00 1.12 7.18 7.18 0.00 0.21 -0.212 77 1.20 3.88 1458 14.58 0.00 0.65 0.55
39 0.00 250 40.83 40.83 0.00 0.03-0.03 78 1.44 6.63 4.46 446  46.52 0.68 0.76

CoOo~NOUOR~WNE

The obvious characteristics of a molecule with laRf2A by the descriptoHCPSA As to the equation developed by
or HCPSAis that this molecule should have a strong Fesher et al., the improvement of fitting by, may be
tendency to form hydrogen bonds, because the atoms incaused by random correlation.
hydrogen bonds should have highly electronegative atoms (3) Molecular Weight. Besides hydrophilicity and hy-
(oxygen, nitrogen, etc.). Fesher et al. even used the descriptotirophobicity, the bulkiness property of a molecule should
of the number of hydrogen-bond acceptors and found that it be considered. Molecular bulkiness properties, such as
could improve the correlation of the equation (see eq 7). molecular weight, molecular volume, or molecular surface,
Here, besides Idg and HCPSA we used two descriptors  have been introduced by some research. First, we added the
includingnuea andnugp in MLR, and the resulting equations  descriptor, molecular weighMW), in correlation, and the
are as follows: obtained equation is

log BB= 0.221+ 0.139 logP — 0.0156{CPSA—

000463, ., (18)  |09BB=0.22510.17410gP — 0.01381CPSA—

0.00070MW (20)

(n=78,r =0.827,5s=0.422,F = 53.3) (n=78,r =0.829,5= 0.423,F = 54.2)
log BB=0.212+ 0.139 logP — 0.013HCPSA—- . - I
0.15M (19) Compared with eq 17, the statistical significance of eq 20
TTTHBA nearly does not have any improvement. It seems that
(n=78,r = 0.830,s= 0.422,F = 54.6) introduction of a bulkiness descriptor cannot improve the

correlation effectively. We do not think that molecular

From egs 18 and 19, it can be found that considering thesebulkiness does not affect tigBB permeation, but its effect
two descriptors, the statistical significances of the correlations on logBB should be quite different from those of other
did not have effective improvement. In fact, the descriptor molecular features such as Bgr PSA This difference can
HCPSAshows significant correlation withyga Or Nygp. The be easily interpreted. The cavity or channel among the tight
correlation betweerHCPSA and nyga is 0.81, and that  junction membranes should be limited, so only these
between HCPSA and nygp is 0.88, indicating that the  molecules with suitable size are able to cross the membranes.
descriptor related to the hydrogen bonds may be replacedwWhen the size of a molecule is less than that of the cavity



ADME EvALUATION IN DRUG DISCOVERY. 3 J. Chem. Inf. Comput. Sci., Vol. 43, No. 6, 2003149

or channel, the influence of molecular bulkiness should not 2.0
be obvious. When the size of a molecule is larger than a
threshold, the influence of molecular bulkiness begins to go 1.5 4
into effect. If we directly introduce bulkiness descriptors into 1
correlation, they are considered to be additive, which is 1.0 H
questionable. To discover the effective rangeMiiV, we
applied a spline model foMW. The spline model was % 0.5
denoted with angled brackets. For exampMW-allwas 5’
equal to zero if the value dflW-a was negative; otherwise, o 0.0+
it was equal toMW-a. The regression with splines allows %
the incorporation of features that do not have a linear effect ? 0.5
over their entire range. To determine the best value, af a :
systematical search was used to change this value from 100 -1.0 '
to 400 using a step of 10. The best equation is presented ] . .
below: 15 L
1~
log BB = 0.00845+ 0.197 logP — 0.0133HCPSA— 20 . ‘ . ‘
0.0140< MW — 360> (21) ' > A 0 1 2
(n=78,r = 0.876,5s= 0.364,F = 81.5) Experimental logBB

) o L Figure 2. Comparison of experimental |88 with calculated
Compared with eq 20, the statistical significance of eq 21 |ogBB for the compounds in the training set using eq 21.

is improved significantly. The threshold value of 360 in eq

21 demonstrates that larger molecular weight produces lowerB14 in the test set are very good, whereas theBBgalue

permeation rates, but the effect takes effect only when the for compoundB1 is strongly underestimated by this model.

molecular weight is larger than 360. The logBB value for compoundB? is also underestimated,
SinceMW correlates with molecular sizes, other similar but the residual is below 1.0. It should be noted that this set

descriptors such as molecular volume or molecular surfaceof compounds has also been used by the PLS model reported

should possess similar features withw. Similarly, we by Luco et al® the three-descriptor linear model reported
constructed two linear equations includifkyand SASA by Feher et al? and the four-descriptor linear model reported
respectively: by Hou et ak® Here, the estimation error exceegd.00
and was considered as prediction failure. In Luco’s work,
log BB= — 0.00740+ 0.207 logP — 0.0135HCPSA— compoundsB1 and B2 were not predicted correctly. In

0.0166< V — 290> (22) Feher’s work, two compounds includirgl andB11 were
highly overestimated. In Hou's work, compounB4 and
(n=78,r=0.872,5s=0.370,F = 78.4) B2 were also determined as outliers. Here, using our model,
log BB= 0.291+ 0.138 logP — 0.0098CPSA— only compound1 has the (_astimation error Iarger than 1.0.
0.00969< SASA- 450> (23) If we tregte(_jBl as an outlier, the mean unsigned error is
0.16, which is lower than that reported by Hou et al. (0.41),
(n=78,r =0.867,5= 0.377,F = 74.4) Luco et al. (0.25), or Feher et al. (0.40). That is to say, the
prediction potential of eq 21 is much better than several other
Although MW, V, and SASAare all descriptor related to  models.
molecular size, judging from the statistical parameters of the  The second validation test included 23 structurally diverse
linear equations, the best linear model is eq 21. compounds. The observed and predictedBBglata are
Model Validation. Equation 21 only includes three shown in Table 5. Inspection of these results shows that that
descriptors; moreover, from the calculation of the correlation the linear model performs reasonably well, and only one
matrix of the parameters, we found that all descriptors in eq compoundC13 was strongly underestimated and may be
21 were independent. Although introduction of other descrip- considered as an outlier. Most compounds in test set 2 are
tors may improve the correlation, we think that when the also included in the test set 2 used by Feher &tlalFeher’s
training set is limited the addition of more descriptors may work, compound€1, C2, C8, andC14 were not estimated
introduce more possibility of random correlation. The leave- correctly. But in the current work, for all these four
one-out (LOO) method was used to calculate the statistical compounds, eq 21 gave good predictions. In our previous
quantityqg of eq 21. The calculated (0.858) shows that eq  work, two compounds includinG14 andC19 were strongly
21 is reliable. A plot of the calculated IB@ versus observed  underestimated. Considering all compounds in test set 2, the
logBB values for the training set is shown in Figure 2. The mean unsigned error using eq 21 is 0.43, which is a little
observed loBB values, calculated, and residuals are listed better than that (0.48) in our previous work. The plot of
in Table 4. calculated logB versus observed I&B values for the tested
The actual prediction power of eq 21 was validated by compounds is shown in Figure 3. The observe@Bgalues,
two external test sets. The first validation set includes the calculated, and residuals are listed in Table 5. The good
BB ratio of eight H1-receptoi§1—B8) histamine antagonist/  predictions for the tested compounds confirm the significance
agonist and six miscellaneous CNS age®8-(B14). The of the three selected descriptors and the model based on them.
observed and predicted IB& are shown in Table 5. As may High-Throughput logBB Prediction. To improve the
be seen from Table 5, the predictions to compouBds efficiency of logBB prediction, we performed reparametri-
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Table 5. Experimental and Predicted IB8 Values for Compounds 15 -
Comprising Test Sets Using Equation 21 | .

ID  logBBwy HCPSA logP  MWag logBBuan residue 104 L e
B1 -1.30  40.85 237 000 -0.02 -1.28 ] ; ; ; ; L% e
B2 -1.40 4410 -0.12 000 -056 -0.84 ; ; : ; ; ;

B3 -0.43  59.67 213 0.00 -0.33 -0.10 054 SR R CoeTrTri
B4 0.25  36.28 277  0.00 0.12 0.13 m : : e . :

B5 —0.30  24.56 0.65 000 -013 -0.17 Q ; ; SR LY :

B6 -0.06 1405 082 000 005 —0.11 S 00 S e
B7 —0.42  43.62 026 0.00 —0.48 0.06 - - ® ' ' . :

B8 -0.16  35.12 2.18  0.00 0.02 —0.18 L oosd b A A S
B9 0.00  47.70 291 0.00 -0.01 0.01 S . e e :

B10 -0.34  62.95 1.95 0.00 —0.41 0.07 o ;

B11 -0.30  50.02 121  0.00 —0.38 0.08 o oqod. ... . R S S
B12 -1.34 7121 0.03 1380 -1.09 —0.25 L. ' ' : '

B13 -1.82 9294 -096 2980 -1.81 —0.01 1 ; ; : ; : ;

B14 0.89 3.76 432  0.00 0.88 0.01 a5 SN R o Lo L
; 0.94 : ; _ ; ; _
MUE? 0.16 o

SSE 0.88 -2.0 T | — 1 ' 1 _r T Tt 1T ' T T
rmse 0.26 -2.0 -1.5 -1.0 -0.5 0.0 05 1.0 15
Cc1 —0.29 62.68 —0.89 0.00 —0.97 0.68 .

c2 —~0.06 4553 —053 0.0 —0.66 0.60 Experimental logBB

c3 —010 2056 151 0.0 0.09 -0.19 Figure 3. Comparison of experimental 186 with calculated
c4 -1.23  70.08 133 0.00 —0.63 —0.60

logBB for the compounds in the test set using eq 21. (Two

C5 -0.31 54.76 0.61 0.00 —-0.56 0.25 ; ; ;
o 018 4369 368 0.00 020 —0.38 gicmggl;nds with predicted errors larger than 1.0 are marked with
Cc7 0.11 42.68 2.27 0.00 —0.07 0.18
C8 0.55 43.79 1.50 0.00 —-0.23 0.78 8
C9 0.12 79.95 2.05 0.00 —0.63 0.75
C10 —-1.42 78.16 0.46 0.00 —-0.92 —0.50
C11 0.04 40.54 3.1 0.00 0.13 —-0.09
C12 0.5 19.35 2.62 0.00 0.33 0.17
C1¥ —1.26 67.29 3.37 0.00 —0.19 —1.07
Ci14 0.61 64.09 2.23 0.00 —-0.37 0.98
C15 0.39 37.72 2.73 0.00 0.09 0.30
C16 1.30 3.94 4.11 0.00 0.84 0.46 o
C17 1.20 9.72 5.32 0.00 1.00 0.20 (§
C18 0.36 21.71 3.36 0.00 0.44 —0.08 o
C19 —-0.7 51.08 513 9461 -0.89 0.19 0]
C20 1.23 4.01 3.99 0.00 0.81 0.42 O
c21 1.06 3.98 4.62 0.00 0.94 0.12 a'
Cc22 0.24 3.71 5.37 10.59 0.95 —-0.71
Cc23 —0.52 49.26 1.16 0.00 -—-0.38 —-0.14
r 0.78
MUE? 0.39
SSE 4.97
rmse 0.48
aMUE represents mean unsigned erfo&SErepresents sum of 2 2 o 2 4 & 8
square error¢ B1 and C13 are not included in the calculations of
MUE, SSE,and rmse. SLOGP v1.0

Figure 4. Correlation between the calculation logP values by
zation of SLOGP and proposed a set of parameters ofaddition of atom-weighted surface area in SLOGP v1.0 and simple
topological polar surface. Using the new strategies, the atomic addition in SLOGP v2.0.

calculations of lo§ andHCPSAare only based on the 2D . . o
topological information of a molecule. calculated values by simple atomic addition in SLOGP v2.0

(1) SLOGP v2.0 Model. The final model for logP and those by addition of atom-weighted surface area in

calculations was obtained by correlating the t@&alSAof SLOGP v1.0. The .|9@ values ca_lculate(_j by thqse_two
112 atom types and the frequencies of two correlation factors methods_ show S|gn!flcant correlation, W.h'Ch. was indicated
with the experimental 109 values. Using the new atom PY the high correlationr(= 0.95) shown in Figure 4.
typing rule, we obtained a good prediction mode( 1850, (2) TPSA The statistical analysis provides very good
r = 0.988,SD = 0.374,F = 662.574). This model is only  correlation between 3[PSAand TPSAwith the following
a little worse than that model based on addition of the atom- statistical parameters:2 = 0.990,SD = 6.43. The atomic
weighted surface area proposed by ms=(1850,r = 0.988, contributions obtained from eq 13 are listed in Table 3. The
SD= 0.368,F = 702.218). The new atoms typing rule and contributions for different atom types are different from those
the corresponding parameters have been introduced intoprovided by Ertl et al. It is not strange because in this paper
SLOGP v2.0. the solvent accessible molecular surface areas were used in
To compare the parameters and the parameters in SLOGHitting, while in Ertl's work, the van der Waals surface area
v1.0, we predicted Idg values of the compounds in the were used. Using the parametersiéfSA we calculated the
training set. Figure 4 shows the correlation between the high-charged topological polar surface arel€TPSA. The



ADME EvALUATION IN DRUG DISCOVERY. 3 J. Chem. Inf. Comput. Sci., Vol. 43, No. 6, 20@3.51

calculated results are highly correlated w@tHPSA(r = Table 6. Experimental and Predicted IB§ Values for Compounds
0.99), which indicates thaCHTPSA provides the same  Comprising Test Sets Using Equation 24
quality as the computationally much more demanding 3D ID  logBB.y, HCTPSA logP MWkgo l0gBBan residue

HCPSA B1° ~-1.30  40.48 252 000 -001 —1.29
It seems that the calculated result$HPSAandHCTPSA B2 —1.40 50.87 —0.14 000 -0.57 —0.83
are quite similar. Actually, for small organic molecules, these B3 —0.43 5024 169 000 -027 -0.16
two kinds of models are not very different, because nearly B4 025 273 217 000 011 014
. —-0.30 18.59 0.60 0.00 —0.03 -—0.27
gll atoms in small compounds are exposed to s_olvent. Here, gg —0.06 10.00 089  0.00 0.13 —0.19
it should be noted that although for small organic molecules g7 —0.42 40.48 0.15 0.00 —-039 -0.03
the performances of the two surface models are not very B8 —-0.16 37.65 155 0.00 —0.13 —0.03
different, we thinkdCPSAbased on 3D molecular structure E?o 822 gg-gg f-gg 8-88 —g-gi g-gg
should be a more un|\_/ersal mod_el espeually for Iarge B11 —0.30 4946 318 000 —002 —0.28
molecules such as peptide. Sometimes, if some atoms in agq, —134 72.34 242 13.80 —-0.64 —0.70
molecule are surrounded by other atoms and located in theB13 —-1.82 95.23 1.31 2980 —-1.33 —0.49
interior of a molecule, these atoms contribute little or even B14 0.89 1.80 4.05  0.00 0.75 0.14
nothing to surface area, and so the calculated results of{ oo
HCTPSAmay deviate the correct value significantly. SSE 0.99
(3) High-Throughput logBB Prediction. After we rep- rmse 0.28
arametrized SLOGP and proposed HETPSAparameters, (o] —0.29 57.54 —0.73 0.00 —0.76 0.47
three parameters in eq 21 were independent with the 3D C2 —0.06 4339 —-057 0.00 -0.54 0.48
molecular structure. Using the new parameters, we performedC3 —0.10 37.25 204 000 -0.04  —0.06
| . ; - ca —-1.23 66.56 156 0.00 —0.51 —0.72
a new linear correlation and got the following equation: c5 _031 48.43 071 000 —041 0.10
C6 —-0.18 38.04 2.85 0.00 0.08 —0.26
log BB=0.1256+ 0.160 logP — 0.0133HCPSA— c7 0.11 52.19 242 0.00 —0.18 0.29
0.0148< MW — 360> (24) C8 0.55 40.34 1.15 0.00 —0.23 0.78
c9 0.12 66.24 127 0.00 —0.55 0.67
_ — — — C10 —1.42 89.67 0.09 000 —-1.05 -0.37
(n=78,r=0.862,5= 0.375,F = 66.9) c11 004 3448 397 000 030 —0.26
Compared with eq 21, the correlation of eq 24 is a little gizzac _3'256 éfgé ;.95;3 g_'gg _0.8%29 _1.1%'21
worse, but eq 24 can be used as very high throughput, c14 0.61 59.91 244 0.00 —0.28 0.89
because the only processing step required is the identification C15 0.39 36.44 2.76  0.00 0.08 0.31
of atom typing rules and the corresponding atomiclagd Cl16 1.30 3.61 4.30  0.00 0.77 0.53
HCTPSAparameters. Cc17 1.20 10.40 3.70 0.00 0.58 0.62
- . c18 0.36 22.77 3.76  0.00 0.42 —0.06
To check the actual prediction potential of eq 24, thé8Bg 19 0.7 53.76 437 9461 —1.17 047
values for two test sets were predicted using eq 24. The c20 1.23 3.61 432  0.00 0.77 0.46
calculated lo§, HCTPSA and predicted l0gB data are cz21 1.06 3.61 4.94  0.00 0.87 0.19
shown in Table 6. To these two test sets, the predictions €22 0.24 3.61 —073 1059  0.83 -0.59
using eq 24 are quite similar to those using eq 21. Using eq rC23 ~052 4250 ~0.57 000 ~0.26 _8:58
24, two compound81 and C13 were also highly overes-  myga 041
timated. In fact, the correlation between the predicted results SSE 4.89
using eq 21 and those using eq 24 are very high 0.97), rmse 0.47

implying that those two models can give consistent results. 2 MUE represents mean unsigned erfo&SE represents sum of

Not considering any outlier, eq 24 gives an absolute mean gqare errorc B1 and C13 are not included in the calculations of
error of 0.40. The prediction is a little worse than that given MUE, SSE and rmse.

by eq 21 (absolute mean error is 0.36), but the calculation
efficiency of Drug-HBB is much higher than that of Drug-
BB. Based on 3D molecular structures, the Drug-BB program
is able to process about 1000 molecules/min on a standar
1.2G-MHz PC, while based on topological information only,
the Drug-HBB program is able to process about 5000
molecules/min on a standard 1.2G-MHz PC.

BBBpermeation: a hydrophobic molecule can penetrate the
qBBB barrier easier; larger polar surface areas have more
negative contribution to Id8B values, but the contributions
are only limited to those atoms with high-charge densities;
and a larger molecule will lead to wor&BB penetration
ability, but this bulk effect may take effect when the
molecular weight is larger than 360. The predictions to the
CONCLUSION external test sets demonstrate that this model bears good
In the current work, based on a large set of organic performance and can be used for estimation oBBgalues
compounds linear correlation models were developed to for drug and drug-like molecules.
estimate blood-brain partitioning values. The best linear To improve the efficiency of prediction, we made an
model includes three descriptora:octanol/water partition  extensive reparametrization of SLOGP and developed a new
coefficient calculated using the SLOGP approachP|dugh- set of parameters to calculate topological polar surface area.
charged polar surface areas based on Gasteiger partiaBased on the new procedures, the calculations oP,log
chargesPSAic; and the excessive molecular weight larger HCTPSA and lo@3B are only based on the topological
than 360 MW;6,. These three descriptors give a meaningful structure of a molecule and can be performed as real high-
physical picture of the molecular mechanisms involved in throughput fashion.
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SLOGP v2.0, HCTPSA, and logBB based on topological
information of a molecule have been incorporated into a
program name Drug-HBB. In Drug-HBB, a parameter file
name typsa.prm is used to store the definition of SMARTS
definitions of atom types and the corresponding surface
parameters. The SLOGP v2.0, Drug-BB, and Drug-HBB have
been tested on IRIX and Linux operation systems, and all the
programs can be obtained from authors upon request or
downloaded from the Web site www.cadd.chem.pku.edu.cn.
The structures in the training set and the test set are saved
in MACCS/sdf database format. This material is available free
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