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In this paper, QSPR models were developed for in vivo blood-brain partitioning data (logBB) of a large
data set consisting of 115 diverse organic compounds. The best model is based on three descriptors:n-octanol/
water partition coefficient calculated using the SLOGP approach, logP; high-charged polar surface areas
based on the Gasteiger partial charges,HCPSA, and the excessive molecular weight larger than 360,MW360.
The model bears good statistical significance,n ) 78, r ) 0.88,q ) 0.86,s ) 0.36,F ) 81.5. The actual
prediction potential of the model was validated through two external validation sets of 37 diverse compounds.
The predicted results demonstrate that the model bears better prediction potential than many other models
and can be used for logBB estimations for drug and drug-like molecules. Comparison of several logP
calculation approaches suggests that logP calculated by SLOGP can be used as a significant descriptor for
the prediction of molecular transport properties because SLOGP gives the most similar results with CLOGP.
The QSPR model indicates that larger polar surface areas have a more negative contribution to logBB, but
the absolute partial charges on the atoms surrounded by the polar surfaces should be larger than 0.10|e|.
Meanwhile, tight junction membranes limit the size of hydrophilic molecules that can cross the membrane
with a molecular weight of approximately 360, because when a molecule’s weight is larger than 360 it
shows a negative contribution to logBB. The computations of molecular surface, partial charges, logP, and
logBB have been accomplished using a program called Drug-BB. Moreover, to improve the efficiency of
the computations of logP, we made an extensive reparametrization of SLOGP, and the newly developed
SLOGP model is only based on simple atomic addition. Further, we developed a set of parameters to calculate
the topological polar surface area (TPSA), thus the high-charged topological polar surface area (HCTPSA)
could be estimated from the 2D connection information of a molecule. Adopting the new strategies, the
estimations of logP, HCTPSA, and logBB are only based on the topological structure of a molecule and
therefore, can be used for fast screening of virtual libraries having millions of molecules.

INTRODUCTION

The development of combinatorial chemistry and high-
throughput screening (HTS) gives us more opportunities to
synthesize and gives a rapid and effective assay to thousands
upon thousands of compounds in a very short period. As
discovery chemistry produces increased numbers of potential
drug compounds, the use of ADME (absorption, distribution,
metabolism, and excretion) properties is becoming increas-
ingly important in the drug selection and promotion process.1

The significant failure rate of drug candidates in late stage
development is driving the need for predictive tools that can
eliminate inappropriate compounds before substantial time
and money are invested in testing. It has been estimated that
about 50% of such failures are caused by ADME/Tox
deficiencies.2 Apparently developing effective computational
models to screen ADME properties is very promising as an
early screen for potential drug candidates and for the design
of combinatorial libraries.

A good example that exemplifies the great utility of a
predictive computational model in drug discovery is a model
for predicting blood-brain barrier (BBB) penetration. In the
case of effective central nervous system (CNS) acting drugs,

the knowledge of the penetration of drugs throughBBB is
critical to screen potential therapeutic agents and to improve
the side effect profile of drugs with peripheral activity.3 BBB
is a complex physical and biochemical interface, which is
composed of tightly jointed blood capillary endothelial cells.
The extent to which drug molecules cross from the blood
into the brain is governed by two physiologically and
anatomically related systems,BBB and the blood-cerebral
spinal fluid (CSF) barrier, which form two pathways by
which drug compounds partition between plasma and brain
tissue. At the molecular level, the principal component of
the barrier is the lipid bilayer of the capillary endothelial
cell membrane, through which compounds have to diffuse
to reach the brain. The membranes involved are tight junction
membranes by brain parechymal cells. Tight junction mem-
branes limit the size of hydrophilic molecules that can cross
the membrane by paracellular diffusion. The vast majority
of substances that penetrate a tight junction barrier are
lipophilic molecules that cross by a transcellular route.4

Experimental data have shown that lipophilic compounds,
along with water and small polar molecules, can cross both
the blood-brain and blood-CSF barriers. Hydrophilic organic
molecules, including plasma proteins and larger polar
molecules, cannot penetrate well.* Corresponding author e-mail: xiaojxu@chem.pku.edu.cn.
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In experiments, the relative affinity for the blood or brain
tissue can be expressed in terms of the blood-brain partition
coefficient, logBB) log(Cbrain/Cblood), whichCbrain andCblood

are the equilibrium concentrations of the drug in the brain
and the blood, respectively. Both in vivo and in vitro
experiments have been conducted that calculated logBB.
However, both these methodologies are laborious, expensive,
and time-consuming and require a sufficient quantity of the
pure compounds, often in radiolabeled form to obtain reliable
experimental data, hence not amendable to high-throughput
screening of therapeutic candidates.5,6 So theoretical and
computational methodologies to predict logBB would have
a great impact on drug research and development.

Numerous attempts have been attempted to correlateBBB
transport with physicochemical descriptors, in particular with
the octanol-water partition coefficient, logP. Young et al.
proposed a correlation between logBB and ∆logP (see eq
1).7 ∆logP is defined as the difference between logPow and
logPcychw, wherePow and Pcyclw are the octanol/water and
cyclohexane/water partition coefficient, respectively. How-
ever, in some cases, logP shows poor correlation with logBB.
For example, Ter Laak et al. found that the brain permeability
of a series of structurally diverse histamine H1 receptor
antagonists was better explained by logDoct rather than by
logP.8 At present it is well-known that logBB cannot be
effectively predicted only based on the hydrophobic param-
eters.

Kaliszan et al. reestablished the correlation of logBBwith
logP and refined it, employing the molecular weight as an
additional descriptor of molecular bulkiness (see eq 2).9 The
authors indicated that a molecular bulkiness descriptor should
be used to better account for nonspecific dispersive properties
of molecules.

In addition to hydrophobic parameters, the descriptors
related with molecular surface properties, molecular size, and
hydrogen bond formation have also been found as important
contributors to logBB. Among all these descriptors, polar
surface area (PSA) may be the most important one. Using
PSA as the only descriptor, Kelder et al. obtained the
following simple equation for a training set of 45 com-
pounds:10

A similar equation was also developed by Clark based on a
training set of 55 compounds:11

In an effort to account for hydrophobic contributions, Clark
introduced logPoct as an additional descriptor:11

Some research observed that introducing a descriptor about
hydrogen-bonding ability could improve the quality of the
QSPR models. Feher et al. proposed the following regression
model12

wherenacc is the number of hydrogen-bond acceptors.
Abraham and co-workers constructed the following equa-

tion using a fragment-based scheme13,14

whereR2 is an excess molecular refraction;π2
H is the di-

polarity/polarizability parameter;∑R2
H and ∑â2

H are the
solute hydrogen-bond acidity and basicity, respectively; and
Vx is the McGowan characteristic volume. A potential
problem of their models is that the descriptors are not easily
estimated for structurally diverse drug candidates.

Lomardo et al. established a correlation between logBB
and solvation free energy calculated using semiempirical
quantum chemical calculations15

where∆Gw is the free energy of solvation. This correlation
provides an elegant means for good logBB prediction.
However, computation of∆Gw based on semiempirical
calculations is time-consuming, and moreover, the precision
of the current methods for∆Gw prediction is questionable
especially for complicated organic molecules.

Recently, Kaznessis et al. applied Monte Carlo simulations
of compounds in water to calculate such properties as the
solvent-accessible surface area (SASA), the solute dipole, and
the hydrophilic, hydrophobic, and amphiphilic components
of SASA.16 Using these parameters, they obtained the
following equation

whereHBAC is the number of hydrogen-bond acceptors;
HBDN is the number of hydrogen-bond donors;MVOL is

log BB ) 1.889-0.485∆log P (1)

(n ) 20, r ) 0.831,s ) 0.439,F ) 40.23)

log BB ) - 0.088+ 0.272∆log P - 0.00112Mm (2)

(n ) 33, r ) 0.947,s ) 0.126,F ) 131.1)

log BB ) 1.33-0.032PSA (3)

(n ) 45, r2 ) 0.84,F ) 229)

log BB ) 0.55-0.016PSA (4)

(n ) 55, r2 ) 0.71,F ) 128,s ) 0.41)

log BB ) 0.139-0.148PSA+ 0.152ClogP (5)

(n ) 55, r2 ) 0.79,s ) 0.35,F ) 95.8)

log BB ) 0.131-0.145PSA+ 0.172MlogP (6)

(n ) 55, r2 ) 0.77,s ) 0.37,F ) 86.0)

log BB ) 0.4275-0.0017PSA- 0.1092 logP -
0.3873nacc (7)

(n ) 61, r ) 0.854,s ) 0.424,F ) 51)

log BB ) 0.055-0.507∑R2
H - 0.500∑â2

H +
0.023 logP (8)

(n ) 49, r ) 0.949,s ) 0.201,F ) 136.1)

log BB ) - 0.038-0.715∑R2
H - 0.698∑â2

H +

0.198R2 - 0.687π2
H + 0.995Vx (9)

(n ) 57, r ) 0.952,s ) 0.197,F ) 99.2)

log BB ) 0.43+ 0.054∆Gw (10)

(n ) 55, r ) 0.82,F ) 108)

log BB ) 0.0458-0.234HBAC+ 0.0015MVOL +
31.610HBAC× HBDN1/2/SASA(11)

(n ) 76, r ) 0.97,s ) 0.173,F ) 311.307)
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the molecular weight; andSASAis the solvent accessible
surface area. The correlation of eq 11 seems very good, but
in order to gain a better correlation, the authors identified
nine strong outliers and removed them.

All of the above equations were obtained using multiple
linear regression (MLR). Meanwhile, many earlier models
were based on a relatively small set of molecules and were
not fully validated by external prediction sets. Moreover, in
most papers, to improve the correlations, the authors usually
removed some compounds from the training set subjectively.

Besides MLR, other statistical methods, especially partial
least-squares (PLS), have been applied in the prediction of
logBB. Norinder used MolSurf parametrization to calculate
various properties related to the molecular valence region
and combined it with PLS to develop a QSPR of logBBwith
three statistically significant components.17 Luco also em-
ployed the PLS technique to develop a QSPR based on
several topological and constitutional descriptors.18 More
recently, Crivori applied a new technique, Volsurf, to
transform 3D molecule fields into descriptors and correlate
them to the experimental permeation by PLS.19 However,
the PLS method generally appears to strip the QSPR from
explicit physical insight, and the determination of the
principle components of numerous physicochemical descrip-
tors cannot be easily calculated for an arbitrary compound.

In our previous work of the relationships between logBB
of 96 structurally diverse compounds with a great number
of structurally derived descriptors, we found that logP was
very crucial to logBB.20 When we constructed the prediction
models of logBB, the ALOGP approach proposed by Crippen
et al.21 was used to calculate logP by using the Cerius2
molecular simulations package.22 The dependence on the
commercial software prevents us from developing a proce-
dure to estimate logBBas an automatic fashion. In this article,
we like to present the results of our recent study by
introducing a new logP parameter23 and developing a simple
predictive model ofBBB penetration. For an efficient
computational model, besides precision, speed should also
be considered, because to be a high-throughput-screening
tool it is expected to process a large number of compounds
in a short period of time. To make the prediction of logBB
more efficient, we made an extensive reparametrization of
SLOGP, and the newly developed SLOGP model is only
based on simple atomic addition. Further, through adopting
the definition of topological polar surface area, the logBB
calculation is only based on the topological structure of a
molecule and can be accomplished very rapidly and easily.

METHODS

Data Set.The quality of a QSPR model depends strongly
on the size and quality of the data set used. Variety
experimental protocols have been applied in the measurement
of logBB. To let the data used in this paper bear good
comparability, all data are based on in vivo measurements
taken from rat studies. Besides the compounds used in our
previous work,20 we added 20 new compounds collected from
different articles.24-27 The whole data set includes 115 diverse
organic compounds, which was divided into a training set
of 78 compounds (Table 1) and two test sets of 37
compounds. The first test set comprises 14 compounds from
several literature sources (B1-B14 in Table 2),13,15,27 and

the other one comprises 23 drugs collected by Salmien et
al. (C1-C23 in Table 2).28

The molecular geometries of all compounds were fully
minimized using a molecular mechanism with a MMFF force
field,28 and the terminal condition was set as the RMS of
potential energy smaller than 0.001 kcal.Å-1.mol-1. For these
flexible compounds, the conformational analyses were
performed to determine the most stable conformers. The
models were then saved into two MACCS/sdf files named
training.sdf and test_set.sdf for further analysis. The MACCS/
sdf files are available in the Supporting Information.

Descriptors Used in MLR. (1) Hydrophobicity Descrip-
tor. Traditionally, calculated values of the octanol/water
partition coefficient have been used in the estimation of
molecular transport properties. In this paper, a novel method,
SLOGP, developed in our group, was used to calculate logP
of organic molecules.23 SLOGP estimates logP by summing
the contribution of atom-weighted solvent accessible surface
areas (SASA) and correction factors. Comparison of various
logP models to the external test set demonstrates that our
method bears very good accuracy and is comparable or even
better than the fragment-based approaches.23

As being well-known, due to adopting a different training
set and a different additive strategy a different logP prediction
model may generate different predicted values for the same
organic molecule. In this paper, to verify the validity of
SLOGP, we compared SLOGP with CLOGP, the most
popular method of logP prediction, using the data set studied
here.30 Meanwhile, the predictions by the other four methods,
including ALOGP,21 ALOGP98,31 HINT,32 and the Wildman
model,33 were compared with those of CLOGP systemati-
cally. ALOGP method is a direct, easy-to-computerize atomic
constant approach to predict logP and is shown to exhibit a
relatively robust performance. The difference between ALOGP
and ALOGP 98 is the usage of different atomic hydrophobic
parameters. logP values by ALOGP and ALOGP98 were
obtained using the Cerius2 molecular simulation package.22

HINT is a program designed for quantifying and visualizing
hydrophobic and polar interactions. The logP calculation
performed by HINT is based on the hydrophobic fragment
constant approach of Hansch and Leo. In addition, there are
a number of “factors” and application rules, which modify
the total partition constant depending on a specific bond,
chain, or branching, etc. logP values by CLOGP and HINT
were calculated using the Sybyl molecular simulation pack-
age.34 The Wildman’s model is based on simple atomic
addition. The Wildman’s logP values were calculated using
a homemade program. The atom typing rule and hydrophobic
parameters for the Wildman model were obtained from
ref 33.

(2) Hydrophilicity Descriptor. Due to the physical nature
of the lipid bilayer, organic molecules, which can form
favorable hydrogen-bonding or electrostatic interactions with
the lipid bilayer, may have great difficulty withBBB
penetration. To form an effective hydrogen bond or favorable
electrostatic interactions, a molecule should have high
electronegative atoms (oxygen, nitrogen, etc.) that are
exposed on the molecular surface. Indeed it has been proven
that polar surface area (PSA) is a very significant descriptor
for drug transport properties such as human intestinal
permeation and blood-brain barrier penetration. In this paper,
the polar atoms include all oxygen atoms, nitrogen atoms,
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Table 1. Compounds Used To Obtain the Training Set
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Table I (Continued)
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and sulfur atoms. By definition,PSAevaluation requires 3D
molecular conformation and atomic surface area. Here,
molecular solvent accessible surface areas were calculated
using the MSMS program35 and the probe radius was set to
0.5 Å, according to the definition in SLOGP, and thus the
calculations of logP andPSAcan share the same output of
surface calculation. It should be noted that the surface areas
of hydrogen connected with the polar atoms are included in
PSA.

Generally, as a polar atom, it should be highly electro-
negative and possess high charge density. If the charge
density on an oxygen atom or a nitrogen atom is very low,
this atom may not produce a strong hydrogen bond or
favorable electrostatic interactions with other polar atoms.
Thus, to make a more close connection between the polar
atom and the partial charge, we used a new definition named
“high-charged polar atom”. According to our definition, only
polar atoms with high charge densities belong to high-
charged polar atoms. Here, the Gasteiger method was used
to calculate the partial charges,36 and thePSAsurrounding
those polar atoms with absolute partial charges larger than
0.1|e| was treated as the high-charged polar surface area
(HCPSA). In Gasteiger calculations, only the connectivities
of the atoms are considered so only the topology of a
molecule is important.

The number of hydrogen-bond donors and acceptors were
obtained using the Patty rules,37 which were interpreted by
OELIB.38 We defined a parameter file to store features of
atoms that can form hydrogen bonds. These atoms were
divided into three categories: hydrogen-bond donor (HBD),
hydrogen-bond acceptor (HBA), and polar atom (POL) that
has a lone electron pair and a polar hydrogen atom and can
be treated as a hydrogen-bond donor or a hydrogen-bond
acceptor at the same time.

(3) Molecular Bulkiness Descriptors. It is obvious
that the rate of passive paracelluar transport depends strong-
ly on molecular size. The simplest descriptor concerned
with molecular size is molecular weight (MW). Certainly,
MW usually correlates very well with other two descrip-
tors: molecular volume and molecular surface area. Here,
molecular volume and molecular solvent-accessible sur-
face area (SASA) were estimated using the MSMS pro-
gram.35

logBB Prediction based on Topological Structures.The
calculations of logP andHCPSAneed surface area calcula-
tion based on the 3D representation of a molecule, so the
computations of these two descriptors may be relatively time-
consuming. To improve the efficiency of logBB prediction,
we tried to calculate these two descriptors only based on
2D topological information. To improve the calculation
efficiency of logP and HCPSA, we adopted the following
strategies:

(1) Reparametrization of SLOGP. In version 1.0 of
SLOGP,23 logP is calculated by summing the contribution
of atom-weighted solvent accessible surface areas (SASA)
and correction factors, so 3-D structure and molecular surface
calculations should be necessary. In the revised version of
SLOGP, logP of a molecule is calculated from the additions
of atoms and correction factors, and it can be described by

wherebi andci are regression coefficients;ni is the number
of theith atom type; andBj is the number of thejth correction
factor.

Because we do not connectSASAwith logP, we may need
to define more atom types to represent the atoms with
different exposures to solvent. The final atom classification
system includes 112 atom types, not 100 in SLOGP v1.0.
The atom types were determined by using the SMARTS
system. In SLOGP v2.0, we also considered two correction
factors, including hydrophobic carbon and intramolecular
hydrogen bond, implemented in SLOGP v1.0. More detailed
descriptions of these two correction factors can be found in
ref 23. The data set used for parametrization includes 1850
organic molecules, the same as those used in our previous
work. The new atom typing rule and the corresponding
hydrophobic contributions can be found in SLOGP v2.0.

(2) High-Charged Topological Polar Surface Area
(HCTPSA). Recently a new protocol to generatePSAbased
solely on molecular topological information was proposed
by Ertl et al.39 The procedure calculatesPSA from 2D
molecular bonding information only. The result was termed
topological polar surface area (TPSA). In Ertl’s work the
target for fitting is the van der Waals surface area, while in

Table I (Continued)

log P ) ∑
i

bini + ∑
j

cjBj (12)
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Table 2. Compounds Comprising the Test Sets
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the current work the solvent-accessible surface area was used.
Certainly, different procedures of surface calculations, dif-
ferent van der Waals atomic radii, or even different calcula-
tion parameters may generate differentPSA. So, here, we
developed a new set of atomic parameters to calculateTPSA.
PSAcalculated by MSMS was used as the target in fitting
(see eq 13)

wherePSAis the traditionally calculatedPSAbased on 3D
molecular structure using MSMS;ni is the frequency of
fragmenti in the molecule; andsi is the surface contribution
of type i.

The definition for atom types using in fitting is based on
SMARTS, and all types are united-atomic model (see Table
3). The training set includes 20 000 organic compounds
randomly selected from the Available Chemical Database

(ACD-3D).40 Each compound should satisfy the rule of 5
proposed by Lipinski,41 such as molecular weight smaller
than 600, CLOGP smaller than 5.0, number of hydrogen-
bond donors smaller than 5, and number of hydrogen-bond
acceptors smaller than 10.

(3) High-Throughput logBB Prediction. After reparam-
etrization of SLOGP andTPSA, the calculations of logP and
HCTPSAare based on 2-D molecular bonding information
only, so using logP, HCTPSA, andMW, we developed a new
regression model which can predict logBB as a high-
throughput fashion. All compounds manipulation, processing
of SMARTS, input of parameters, identification of polar
fragment, estimation of logP, HCTPSA, and logBB, were
accomplished by using an in-house program named Drug-
HBB written in C++.

RESULTS AND DISCUSSION

The program, Drug-BB, was developed in C++. The
program reads a single molecule or multiple molecules

Table II (Continued)

PSA) ∑
i

ni.si (13)
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(represented in single SYBYL/mol2 file, single MACCS/
mol file, SYBYL/mol2 database file, or MACCS/sdf database
file), performs atom typing, charge assignment, and surface
estimation, and then calculates logP, HCPSA,and logBB.
The program, Drug-HBB, was developed in C++. The
difference between Drug-HBB and Drug-BB is that Drug-
HBB calculates logP, HCTPSA, and logBB based on mo-
lecular topological information only. The program, SLOGP
v2.0, was also released. Now, SLOGP can give two logP
values for each molecule based on two different additive
models.

Descriptors in QSPR Models. (1) logP. It was found that
logP was an important factor although itself correlates with
logBBpoorly. Here, a direct fitting of logP values with logBB
of the compounds in the training set produced anr of
approximately 0.5:

In the past tremendous efforts by theoretical chemists led
to several useful computational methods for estimating logP
of organic compounds. Among all these logP methods,
CLOGP is the oldest computational procedure, actively
managed, commercially distributed, and perhaps the most
widely used. Here, the SLOGP model developed in our group
was used, so we expected to know if SLOGP could give
effective predictions for those compounds in Tables 1 and
2. The correlation between the logP values predicted by
CLOGP and those by SLOGP are shown in Figure 1a. From
Figure 1a, it can be found that the logP values predicted by
these two approaches show high linear correlation (r ) 0.93).

Furthermore, we predicted the logP values using four other
approaches including ALOGP, ALOGP98, HINT, and the
Wildman model. The linear correlations of logP by these
four methods and those by CLOGP are 0.84, 0.92, 0.78, and
0.90, respectively. As shown in Figure 1, the logP values
predicted by these six approaches indeed exist with obvious

differences. For example, the logP values of compound 6
predicted by CLOGP, SLOGP, the Wildman model, HINT,
ALOGP, and ALOGP98 are-1.92, -1.05, -0.54, 1.57,
-0.10, and-1.52, respectively. From the mean square
deviation and the linear correlation coefficient, SLOGP gave
the most similar results with CLOGP. Because the experi-
mental logP values are unavailable, we cannot give a
conclusion that for each compound SLOGP gives the best
prediction, but the comparison at least demonstrates that
SLOGP yields acceptable estimations for the studied com-
pounds.

(2) HCPSA. We first carried out a simple linear regression
of the 78 compounds in the training set usingTPSAas the
only descriptor. The resulting equation and statistics are

Compared with the Clark’s results shown in eq 3, our
fitting is worse. The main reason for the difference of fittings
given by us and Clark is the usage of different training sets.
In Clark’s work, they used a training set of 55 compounds,
but in our work, we used a training set of 78 compounds.

When a drug molecule passes through brain parechymal
cells, different polar atoms should give a different unfavor-
able contribution to logBB, even if these two atoms bear
similar PSAbecause the partial charges on these two atoms
may exist quite difference. So considering the effect of partial
charges, we divided thePSAinto two categories according
to the values of partial charges: high-charged polar surface
area (HCPSA) and low-charged polar surface area (LCPSA).
HCPSAis thePSAgiven by polar atoms with absolute partial
charges larger than 0.1|e|, andLCPSAis that given by polar
atoms with absolute partial chargers smaller than 0.1|e|. W
constructed a correlation between logBB with HCPSA, and
the resulting equation is

As shown in eqs 15 and 16, using the new parameter, the
correlation coefficient and the Fisher value were improved
obviously. This parameter provides a solid physical picture
of the molecular mechanisms, indicating that only high-
charged polar surface areas impact theBBB permeation.
Here, the cutoff value for the calculation ofHCPSAwas
defined as 0.1. In fittings, a systematical search was used to
change this value from 0 to 0.2 using a step of 0.01, and
finally we found that the value of 0.1 could generate the
best linear model. The values ofPSAand HCPSAfor the
compounds in the training set are listed in Table 4. From
Table 4 it can be found that 63 compounds have identical
PSAandHCPSA, while the other 15 compounds have smaller
HCPSAthanPSA.

Then, we considered both logP andHCPSAin MLR. It is
interesting to find that the partitioning of compounds between
the blood and brain compartments can be effectively
described by a combination of logP andHCPSA.

Table 3. Atomic Contributions (Å2) to PSA

SMARTS
contri-
bution SMARTS

contri-
bution

[#8;H1] 24.584 [n;H0](:*)(:*)-* 6.203
[#8](-*) -* 12.475 [n]:[n] 15.242
[#8;r] 18.205 [NH3] 36.928
[#8])* 17.867 [N;H0](-*)()*))* 0.000
[#8]-NdO 23.875 [N;H0](-*)(-*))* 0.000
[#8])N-O 23.875
[o] 24.854 [#16;H1] 46.908

[#16;H0](-*) -* 29.273
[#7;H2] 33.645 [#16])* 39.344
[#7;H1])* 19.902 [#16])O 25.149
[#7;H1](-*)-* 7.619 [#16]()*))* 5.915
[#7;H0](-*)(-*)-* 0.000 [s] 35.737
[#7;H0](-*))* 14.200
[#7;H0]#* 19.924 [#15](-*)(-*)-* 16.564
[n] 17.807 [#15](-*))* 25.376
[n;r5]c 17.097 [#15](-*)(-*)(-*))* 5.261
[nH] 29.817 [#15;H1](-*)(-*))* 20.123

a Description: * represents any atom; n represents aromatic nitrogen;
o represents aromatic oxygen; s represents aromatic sulfur;- represents
a single bond;) represents a double bond; # represents a triple bond;
: represents an aromatic bond.b Oxygen in a ring.c Nitrogen in five-
membered ring.

log BB ) - 0.552+ 0.236 logP (14)

(n ) 78, r ) 0.492,s ) 0.649,F ) 24.3)

log BB ) 0.571-0.0156PSA (15)

(n ) 78, r ) 0.753,s ) 0.490,F ) 100.4)

log BB ) 0.589-0.0177HCPSA (16)

(n ) 78, r ) 0.779,s ) 0.468,F ) 117.4)

logBB ) 0.219+ 0.139logP - 0.0158HCPSA (17)

(n ) 78, r ) 0.827,s ) 0.422,F ) 81.1)
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Figure 1. Correlation between the calculation logP values by CLOGP with (a) SLOGP, (b) ALOGP, (c) ALOGP98, (d) HintLOGP, and
(e) the Wildman’s model.
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The obvious characteristics of a molecule with largePSA
or HCPSA is that this molecule should have a strong
tendency to form hydrogen bonds, because the atoms in
hydrogen bonds should have highly electronegative atoms
(oxygen, nitrogen, etc.). Fesher et al. even used the descriptor
of the number of hydrogen-bond acceptors and found that it
could improve the correlation of the equation (see eq 7).
Here, besides logP and HCPSA, we used two descriptors
includingnHBA andnHBD in MLR, and the resulting equations
are as follows:

From eqs 18 and 19, it can be found that considering these
two descriptors, the statistical significances of the correlations
did not have effective improvement. In fact, the descriptor
HCPSAshows significant correlation withnHBA or nHBD. The
correlation betweenHCPSA and nHBA is 0.81, and that
between HCPSA and nHBD is 0.88, indicating that the
descriptor related to the hydrogen bonds may be replaced

by the descriptorHCPSA. As to the equation developed by
Fesher et al., the improvement of fitting bynacc may be
caused by random correlation.

(3) Molecular Weight. Besides hydrophilicity and hy-
drophobicity, the bulkiness property of a molecule should
be considered. Molecular bulkiness properties, such as
molecular weight, molecular volume, or molecular surface,
have been introduced by some research. First, we added the
descriptor, molecular weight (MW), in correlation, and the
obtained equation is

Compared with eq 17, the statistical significance of eq 20
nearly does not have any improvement. It seems that
introduction of a bulkiness descriptor cannot improve the
correlation effectively. We do not think that molecular
bulkiness does not affect theBBBpermeation, but its effect
on logBB should be quite different from those of other
molecular features such as logP or PSA. This difference can
be easily interpreted. The cavity or channel among the tight
junction membranes should be limited, so only these
molecules with suitable size are able to cross the membranes.
When the size of a molecule is less than that of the cavity

Table 4. Experimental and Computed logBB Values for Compounds in the Training Set

ID logBBexp logP PSA HCPSA MW360 logBBcal residue ID logBBexp logP PSA HCPSA MW360 logBBcal residue

1 -2.00 1.72 76.79 76.79 19.46 -0.88 -1.12 40 0.03 0.00 67.06 0.00 0.00 0.08 -0.05
2 -1.88 3.01 69.36 69.36 82.36 -1.41 -0.47 41 0.03 -0.57 80.98 0.00 0.00 -0.03 0.06
3 -1.57 0.85 99.74 89.70 0.00 -0.96 -0.61 42 0.04 0.53 0.00 0.00 0.00 0.19-0.15
4 -1.54 1.02 125.07 109.41 0.00 -1.19 -0.35 43 0.08 1.90 0.00 0.00 0.00 0.46-0.38
5 -1.30 3.55 58.74 58.74 88.59 -1.25 -0.05 44 0.08 0.99 41.68 41.68 0.00 -0.28 0.36
6 -1.30 -1.05 92.57 92.57 0.00 -1.37 0.07 45 0.11 1.92 35.44 35.44 0.00-0.01 0.12
7 -1.17 0.44 85.06 85.06 0.00 -0.98 -0.19 46 0.13 1.19 7.00 7.00 0.00 0.22-0.09
8 -1.15 0.92 103.47 93.40 0.00 -0.99 -0.16 47 0.13 1.62 7.56 7.56 0.00 0.30-0.17
9 -1.12 1.88 83.65 79.01 0.00 -0.61 -0.51 48 0.14 4.84 32.92 32.92 21.54 0.29-0.15
10 -1.10 2.21 57.49 57.49 0.00 -0.26 -0.85 49 0.22 4.58 41.30 41.30 5.48 0.35-0.13
11 -1.06 1.38 69.25 69.25 53.55 -1.33 0.27 50 0.24 2.78 8.15 8.15 0.00 0.52-0.28
12 -0.82 -0.32 136.16 118.01 0.00 -1.57 0.75 51 0.25 -0.21 43.93 43.93 0.00 -0.55 0.80
13 -0.73 3.66 80.50 77.09 54.53 -1.00 0.27 52 0.27 2.13 0.00 0.00 0.00 0.50-0.23
14 -0.72 -0.97 133.67 99.88 0.00 -1.45 0.73 53 0.30 5.61 34.22 34.22 20.49 0.44-0.14
15 -0.67 3.10 69.05 69.05 0.00 -0.24 -0.43 54 0.34 2.26 0.00 0.00 0.00 0.53-0.19
16 -0.66 2.16 83.75 79.52 0.00 -0.56 -0.10 55 0.35 2.75 0.00 0.00 0.00 0.63-0.28
17 -0.50 1.22 64.61 64.61 0.00 -0.55 0.05 56 0.36 3.03 0.00 0.00 0.00 0.68-0.32
18 -0.46 1.52 39.37 39.37 0.00 -0.15 -0.31 57 0.37 2.06 0.00 0.00 0.00 0.49-0.12
19 -0.43 2.27 41.22 41.22 0.00 -0.02 -0.41 58 0.37 2.50 0.00 0.00 0.00 0.58-0.21
20 -0.42 0.49 25.21 25.21 0.00 -0.16 -0.26 59 0.39 2.72 33.23 33.23 14.91 -0.04 0.43
21 -0.30 2.06 37.60 37.60 0.00 -0.02 -0.28 60 0.40 2.39 0.00 0.00 0.00 0.56-0.16
22 -0.28 2.96 82.81 79.44 0.00 -0.40 0.12 61 0.42 2.62 7.64 7.64 0.00 0.50-0.08
23 -0.27 3.00 81.86 77.82 0.00 -0.37 0.10 62 0.44 3.28 33.4 33.4 0.00 0.28 0.16
24 -0.24 3.29 36.47 36.47 0.00 0.24 -0.48 63 0.49 2.58 18.09 18.09 0.00 0.35 0.14
25 -0.22 2.09 44.28 44.28 0.00 -0.10 -0.12 64 0.69 3.24 33.22 33.22 0.00 0.28 0.41
26 -0.18 1.73 72.57 62.45 0.00 -0.42 0.24 65 0.76 2.96 0.00 0.00 0.00 0.67 0.09
27 -0.17 0.57 23.98 23.98 0.00 -0.13 -0.04 66 0.80 3.47 0.00 0.00 0.00 0.77 0.03
28 -0.16 -0.10 24.93 24.93 0.00 -0.27 0.11 67 0.81 3.97 0.00 0.00 0.00 0.87-0.06
29 -0.16 0.24 24.94 24.94 0.00 -0.20 0.04 68 0.83 4.43 4.54 4.54 0.00 0.90-0.07
30 -0.15 0.30 23.81 23.81 0.00 -0.18 0.03 69 0.90 3.98 0.00 0.00 0.00 0.87 0.03
31 -0.15 -0.09 20.56 20.56 0.00 -0.21 0.06 70 0.93 3.16 0.00 0.00 0.00 0.71 0.22
32 -0.14 2.77 43.34 43.34 0.00 0.05 -0.19 71 0.97 3.46 0.00 0.00 0.00 0.77 0.20
33 -0.12 3.93 81.53 79.23 8.46 -0.33 0.21 72 1.00 3.30 36.56 36.56 0.00 0.24 0.76
34 -0.08 0.44 18.73 18.73 0.00 -0.08 0.00 73 1.00 4.03 19.64 19.64 0.32 0.61 0.39
35 -0.06 1.62 60.90 60.90 0.00 -0.42 0.36 74 1.01 3.47 0.00 0.00 0.00 0.77 0.24
36 -0.04 -0.06 74.17 64.04 0.00 -0.79 0.75 75 1.04 3.45 0.00 0.00 0.00 0.77 0.27
37 -0.02 1.78 34.58 34.58 0.00 -0.03 0.01 76 1.07 4.01 4.32 4.32 0.00 0.82 0.25
38 0.00 1.12 7.18 7.18 0.00 0.21 -0.21 77 1.20 3.88 14.58 14.58 0.00 0.65 0.55
39 0.00 2.50 40.83 40.83 0.00 0.03 -0.03 78 1.44 6.63 4.46 4.46 46.52 0.68 0.76

log BB ) 0.221+ 0.139 logP - 0.0156HCPSA-
0.00463nHBA (18)

(n ) 78, r ) 0.827,s ) 0.422,F ) 53.3)

log BB ) 0.212+ 0.139 logP - 0.013HCPSA-
0.150nHBA (19)

(n ) 78, r ) 0.830,s ) 0.422,F ) 54.6)

log BB ) 0.225+ 0.174 logP - 0.0138HCPSA-
0.000709MW (20)

(n ) 78, r ) 0.829,s ) 0.423,F ) 54.2)
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or channel, the influence of molecular bulkiness should not
be obvious. When the size of a molecule is larger than a
threshold, the influence of molecular bulkiness begins to go
into effect. If we directly introduce bulkiness descriptors into
correlation, they are considered to be additive, which is
questionable. To discover the effective range ofMW, we
applied a spline model forMW. The spline model was
denoted with angled brackets. For example,〈MW-a〉 was
equal to zero if the value ofMW-a was negative; otherwise,
it was equal toMW-a. The regression with splines allows
the incorporation of features that do not have a linear effect
over their entire range. To determine the best value ofa, a
systematical search was used to change this value from 100
to 400 using a step of 10. The best equation is presented
below:

Compared with eq 20, the statistical significance of eq 21
is improved significantly. The threshold value of 360 in eq
21 demonstrates that larger molecular weight produces lower
permeation rates, but the effect takes effect only when the
molecular weight is larger than 360.

SinceMW correlates with molecular sizes, other similar
descriptors such as molecular volume or molecular surface
should possess similar features withMW. Similarly, we
constructed two linear equations includingV and SASA,
respectively:

Although MW, V, andSASAare all descriptor related to
molecular size, judging from the statistical parameters of the
linear equations, the best linear model is eq 21.

Model Validation. Equation 21 only includes three
descriptors; moreover, from the calculation of the correlation
matrix of the parameters, we found that all descriptors in eq
21 were independent. Although introduction of other descrip-
tors may improve the correlation, we think that when the
training set is limited the addition of more descriptors may
introduce more possibility of random correlation. The leave-
one-out (LOO) method was used to calculate the statistical
quantityq of eq 21. The calculatedq (0.858) shows that eq
21 is reliable. A plot of the calculated logBBversus observed
logBB values for the training set is shown in Figure 2. The
observed logBB values, calculated, and residuals are listed
in Table 4.

The actual prediction power of eq 21 was validated by
two external test sets. The first validation set includes the
BB ratio of eight H1-receptor (B1-B8) histamine antagonist/
agonist and six miscellaneous CNS agents (B9-B14). The
observed and predicted logBBare shown in Table 5. As may
be seen from Table 5, the predictions to compoundsB1-

B14 in the test set are very good, whereas the logBB value
for compoundB1 is strongly underestimated by this model.
The logBB value for compoundB2 is also underestimated,
but the residual is below 1.0. It should be noted that this set
of compounds has also been used by the PLS model reported
by Luco et al.,18 the three-descriptor linear model reported
by Feher et al.,12 and the four-descriptor linear model reported
by Hou et al.20 Here, the estimation error exceeds(1.00
and was considered as prediction failure. In Luco’s work,
compoundsB1 and B2 were not predicted correctly. In
Feher’s work, two compounds includingB1 andB11 were
highly overestimated. In Hou’s work, compoundsB1 and
B2 were also determined as outliers. Here, using our model,
only compoundB1 has the estimation error larger than 1.0.
If we treatedB1 as an outlier, the mean unsigned error is
0.16, which is lower than that reported by Hou et al. (0.41),
Luco et al. (0.25), or Feher et al. (0.40). That is to say, the
prediction potential of eq 21 is much better than several other
models.

The second validation test included 23 structurally diverse
compounds. The observed and predicted logBB data are
shown in Table 5. Inspection of these results shows that that
the linear model performs reasonably well, and only one
compoundC13 was strongly underestimated and may be
considered as an outlier. Most compounds in test set 2 are
also included in the test set 2 used by Feher et al.12 In Feher’s
work, compoundsC1, C2, C8, andC14 were not estimated
correctly. But in the current work, for all these four
compounds, eq 21 gave good predictions. In our previous
work, two compounds includingC14andC19were strongly
underestimated. Considering all compounds in test set 2, the
mean unsigned error using eq 21 is 0.43, which is a little
better than that (0.48) in our previous work. The plot of
calculated logBBversus observed logBBvalues for the tested
compounds is shown in Figure 3. The observed logBBvalues,
calculated, and residuals are listed in Table 5. The good
predictions for the tested compounds confirm the significance
of the three selected descriptors and the model based on them.

High-Throughput logBB Prediction. To improve the
efficiency of logBB prediction, we performed reparametri-

log BB ) 0.00845+ 0.197 logP - 0.0135HCPSA-
0.0140< MW - 360> (21)

(n ) 78, r ) 0.876,s ) 0.364,F ) 81.5)

log BB ) - 0.00740+ 0.207 logP - 0.0135HCPSA-
0.0166< V - 290> (22)

(n ) 78, r ) 0.872,s ) 0.370,F ) 78.4)

log BB ) 0.291+ 0.138 logP - 0.0098HCPSA-
0.00969< SASA- 450> (23)

(n ) 78, r ) 0.867,s ) 0.377,F ) 74.4)

Figure 2. Comparison of experimental logBB with calculated
logBB for the compounds in the training set using eq 21.
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zation of SLOGP and proposed a set of parameters of
topological polar surface. Using the new strategies, the
calculations of logP andHCPSAare only based on the 2D
topological information of a molecule.

(1) SLOGP v2.0 Model. The final model for logP
calculations was obtained by correlating the totalSASAof
112 atom types and the frequencies of two correlation factors
with the experimental logP values. Using the new atom
typing rule, we obtained a good prediction model (n ) 1850,
r ) 0.988,SD ) 0.374,F ) 662.574). This model is only
a little worse than that model based on addition of the atom-
weighted surface area proposed by us (n ) 1850,r ) 0.988,
SD) 0.368,F ) 702.218). The new atoms typing rule and
the corresponding parameters have been introduced into
SLOGP v2.0.

To compare the parameters and the parameters in SLOGP
v1.0, we predicted logP values of the compounds in the
training set. Figure 4 shows the correlation between the

calculated values by simple atomic addition in SLOGP v2.0
and those by addition of atom-weighted surface area in
SLOGP v1.0. The logP values calculated by those two
methods show significant correlation, which was indicated
by the high correlation (r ) 0.95) shown in Figure 4.

(2) TPSA. The statistical analysis provides very good
correlation between 3DPSAandTPSAwith the following
statistical parameters:r2 ) 0.990,SD ) 6.43. The atomic
contributions obtained from eq 13 are listed in Table 3. The
contributions for different atom types are different from those
provided by Ertl et al. It is not strange because in this paper
the solvent accessible molecular surface areas were used in
fitting, while in Ertl’s work, the van der Waals surface area
were used. Using the parameters ofTPSA, we calculated the
high-charged topological polar surface area (HCTPSA). The

Table 5. Experimental and Predicted logBB Values for Compounds
Comprising Test Sets Using Equation 21

ID logBBexp HCPSA logP MW360 logBBcah residue

B1c -1.30 40.85 2.37 0.00 -0.02 -1.28
B2 -1.40 44.10 -0.12 0.00 -0.56 -0.84
B3 -0.43 59.67 2.13 0.00 -0.33 -0.10
B4 0.25 36.28 2.77 0.00 0.12 0.13
B5 -0.30 24.56 0.65 0.00 -0.13 -0.17
B6 -0.06 14.05 0.82 0.00 0.05 -0.11
B7 -0.42 43.62 0.26 0.00 -0.48 0.06
B8 -0.16 35.12 2.18 0.00 0.02 -0.18
B9 0.00 47.70 2.91 0.00 -0.01 0.01
B10 -0.34 62.95 1.95 0.00 -0.41 0.07
B11 -0.30 50.02 1.21 0.00 -0.38 0.08
B12 -1.34 71.21 0.03 13.80 -1.09 -0.25
B13 -1.82 92.94 -0.96 29.80 -1.81 -0.01
B14 0.89 3.76 4.32 0.00 0.88 0.01
r 0.94
MUEa 0.16
SSEb 0.88
rmse 0.26
C1 -0.29 62.68 -0.89 0.00 -0.97 0.68
C2 -0.06 45.53 -0.53 0.00 -0.66 0.60
C3 -0.10 20.56 1.51 0.00 0.09 -0.19
C4 -1.23 70.08 1.33 0.00 -0.63 -0.60
C5 -0.31 54.76 0.61 0.00 -0.56 0.25
C6 -0.18 43.69 3.68 0.00 0.20 -0.38
C7 0.11 42.68 2.27 0.00 -0.07 0.18
C8 0.55 43.79 1.50 0.00 -0.23 0.78
C9 0.12 79.95 2.05 0.00 -0.63 0.75
C10 -1.42 78.16 0.46 0.00 -0.92 -0.50
C11 0.04 40.54 3.1 0.00 0.13 -0.09
C12 0.5 19.35 2.62 0.00 0.33 0.17
C13c -1.26 67.29 3.37 0.00 -0.19 -1.07
C14 0.61 64.09 2.23 0.00 -0.37 0.98
C15 0.39 37.72 2.73 0.00 0.09 0.30
C16 1.30 3.94 4.11 0.00 0.84 0.46
C17 1.20 9.72 5.32 0.00 1.00 0.20
C18 0.36 21.71 3.36 0.00 0.44 -0.08
C19 -0.7 51.08 5.13 94.61 -0.89 0.19
C20 1.23 4.01 3.99 0.00 0.81 0.42
C21 1.06 3.98 4.62 0.00 0.94 0.12
C22 0.24 3.71 5.37 10.59 0.95 -0.71
C23 -0.52 49.26 1.16 0.00 -0.38 -0.14
r 0.78
MUEa 0.39
SSEb 4.97
rmse 0.48

a MUE represents mean unsigned error.b SSErepresents sum of
square error.c B1 and C13 are not included in the calculations ofr,
MUE, SSE,and rmse.

Figure 3. Comparison of experimental logBB with calculated
logBB for the compounds in the test set using eq 21. (Two
compounds with predicted errors larger than 1.0 are marked with
circles.)

Figure 4. Correlation between the calculation logP values by
addition of atom-weighted surface area in SLOGP v1.0 and simple
atomic addition in SLOGP v2.0.
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calculated results are highly correlated withCHPSA(r )
0.99), which indicates thatCHTPSA provides the same
quality as the computationally much more demanding 3D
HCPSA.

It seems that the calculated results ofHCPSAandHCTPSA
are quite similar. Actually, for small organic molecules, these
two kinds of models are not very different, because nearly
all atoms in small compounds are exposed to solvent. Here,
it should be noted that although for small organic molecules
the performances of the two surface models are not very
different, we thinkHCPSAbased on 3D molecular structure
should be a more universal model especially for large
molecules such as peptide. Sometimes, if some atoms in a
molecule are surrounded by other atoms and located in the
interior of a molecule, these atoms contribute little or even
nothing to surface area, and so the calculated results of
HCTPSAmay deviate the correct value significantly.

(3) High-Throughput logBB Prediction. After we rep-
arametrized SLOGP and proposed theHCTPSAparameters,
three parameters in eq 21 were independent with the 3D
molecular structure. Using the new parameters, we performed
a new linear correlation and got the following equation:

Compared with eq 21, the correlation of eq 24 is a little
worse, but eq 24 can be used as very high throughput,
because the only processing step required is the identification
of atom typing rules and the corresponding atomic logP and
HCTPSAparameters.

To check the actual prediction potential of eq 24, the logBB
values for two test sets were predicted using eq 24. The
calculated logP, HCTPSA, and predicted logBB data are
shown in Table 6. To these two test sets, the predictions
using eq 24 are quite similar to those using eq 21. Using eq
24, two compoundsB1 andC13 were also highly overes-
timated. In fact, the correlation between the predicted results
using eq 21 and those using eq 24 are very high (r ) 0.97),
implying that those two models can give consistent results.
Not considering any outlier, eq 24 gives an absolute mean
error of 0.40. The prediction is a little worse than that given
by eq 21 (absolute mean error is 0.36), but the calculation
efficiency of Drug-HBB is much higher than that of Drug-
BB. Based on 3D molecular structures, the Drug-BB program
is able to process about 1000 molecules/min on a standard
1.2G-MHz PC, while based on topological information only,
the Drug-HBB program is able to process about 5000
molecules/min on a standard 1.2G-MHz PC.

CONCLUSION

In the current work, based on a large set of organic
compounds linear correlation models were developed to
estimate blood-brain partitioning values. The best linear
model includes three descriptors:n-octanol/water partition
coefficient calculated using the SLOGP approach, logP; high-
charged polar surface areas based on Gasteiger partial
charges,PSAHC; and the excessive molecular weight larger
than 360,MW360. These three descriptors give a meaningful
physical picture of the molecular mechanisms involved in

BBBpermeation: a hydrophobic molecule can penetrate the
BBB barrier easier; larger polar surface areas have more
negative contribution to logBB values, but the contributions
are only limited to those atoms with high-charge densities;
and a larger molecule will lead to worseBBB penetration
ability, but this bulk effect may take effect when the
molecular weight is larger than 360. The predictions to the
external test sets demonstrate that this model bears good
performance and can be used for estimation of logBBvalues
for drug and drug-like molecules.

To improve the efficiency of prediction, we made an
extensive reparametrization of SLOGP and developed a new
set of parameters to calculate topological polar surface area.
Based on the new procedures, the calculations of logP,
HCTPSA, and logBB are only based on the topological
structure of a molecule and can be performed as real high-
throughput fashion.

log BB ) 0.1256+ 0.160 logP - 0.0133HCPSA-
0.0148< MW - 360> (24)

(n ) 78, r ) 0.862,s ) 0.375,F ) 66.9)

Table 6. Experimental and Predicted logBB Values for Compounds
Comprising Test Sets Using Equation 24

ID logBBexp HCTPSA logP MW360 logBBcah residue

B1c -1.30 40.48 2.52 0.00 -0.01 -1.29
B2 -1.40 50.87 -0.14 0.00 -0.57 -0.83
B3 -0.43 50.24 1.69 0.00 -0.27 -0.16
B4 0.25 27.35 2.17 0.00 0.11 0.14
B5 -0.30 18.59 0.60 0.00 -0.03 -0.27
B6 -0.06 10.00 0.89 0.00 0.13 -0.19
B7 -0.42 40.48 0.15 0.00 -0.39 -0.03
B8 -0.16 37.65 1.55 0.00 -0.13 -0.03
B9 0.00 45.24 2.49 0.00 -0.08 0.08
B10 -0.34 53.98 1.59 0.00 -0.34 -0.00
B11 -0.30 49.46 3.18 0.00 -0.02 -0.28
B12 -1.34 72.34 2.42 13.80 -0.64 -0.70
B13 -1.82 95.23 1.31 29.80 -1.33 -0.49
B14 0.89 1.80 4.05 0.00 0.75 0.14
r 0.96
MUEa 0.21
SSEb 0.99
rmse 0.28
C1 -0.29 57.54 -0.73 0.00 -0.76 0.47
C2 -0.06 43.39 -0.57 0.00 -0.54 0.48
C3 -0.10 37.25 2.04 0.00 -0.04 -0.06
C4 -1.23 66.56 1.56 0.00 -0.51 -0.72
C5 -0.31 48.43 0.71 0.00 -0.41 0.10
C6 -0.18 38.04 2.85 0.00 0.08 -0.26
C7 0.11 52.19 2.42 0.00 -0.18 0.29
C8 0.55 40.34 1.15 0.00 -0.23 0.78
C9 0.12 66.24 1.27 0.00 -0.55 0.67
C10 -1.42 89.67 0.09 0.00 -1.05 -0.37
C11 0.04 34.48 3.97 0.00 0.30 -0.26
C12 0.5 18.71 2.58 0.00 0.29 0.21
C13c -1.26 61.89 3.91 0.00 -0.07 -1.19
C14 0.61 59.91 2.44 0.00 -0.28 0.89
C15 0.39 36.44 2.76 0.00 0.08 0.31
C16 1.30 3.61 4.30 0.00 0.77 0.53
C17 1.20 10.40 3.70 0.00 0.58 0.62
C18 0.36 22.77 3.76 0.00 0.42 -0.06
C19 -0.7 53.76 4.37 94.61 -1.17 0.47
C20 1.23 3.61 4.32 0.00 0.77 0.46
C21 1.06 3.61 4.94 0.00 0.87 0.19
C22 0.24 3.61 -0.73 10.59 0.83 -0.59
C23 -0.52 42.50 -0.57 0.00 -0.26 -0.26
r 0.79
MUEa 0.41
SSEb 4.89
rmse 0.47

a MUE represents mean unsigned error.b SSErepresents sum of
square error.c B1 and C13 are not included in the calculations ofr,
MUE, SSE, and rmse.
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Supporting Information Available: The new atomic
parameters for calculations of logP based on simple atomic
addition have been incorporated into program SLOGP v2.0.
In SLOGP v2.0, a parameter file name hydro_NA.prm was
used to store the SMARTS definitions of atom types and the
corresponding hydrophobic parameters. The calculations of
logP based on SLOGP v1.0, HCPSA, and logBB based on the
3D structure of a molecule have been incorporated into a
program named Drug-BB. The calculations of logP based on
SLOGP v2.0, HCTPSA, and logBB based on topological
information of a molecule have been incorporated into a
program name Drug-HBB. In Drug-HBB, a parameter file
name typsa.prm is used to store the definition of SMARTS
definitions of atom types and the corresponding surface
parameters. The SLOGP v2.0, Drug-BB, and Drug-HBB have
been tested on IRIX and Linux operation systems, and all the
programs can be obtained from authors upon request or
downloaded from the Web site www.cadd.chem.pku.edu.cn.
The structures in the training set and the test set are saved
in MACCS/sdf database format. This material is available free
of charge via the Internet at http://pubs.acs.org.
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