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A novel method for the calculations of 1-octanol/water partition coefficient (logP) of organic molecules
has been presented here. The method, SLOGP v1.0, estimates the logP values by summing the contribution
of atom-weighted solvent accessible surface areas (SASA) and correction factors. Altogether 100 atom/
group types were used to classify atoms with different chemical environments, and two correlation factors
were used to consider the intermolecular hydrophobic interactions and intramolecular hydrogen bonds.
Coefficient values for 100 atom/group and two correction factors have been derived from a training set of
1850 compounds. The parametrization procedure for different kinds of atoms was performed as follows:
first, the atoms in a molecule were defined to different atom/group types based on SMARTS language, and
the correction factors were determined by substructure searching; then,SASAfor each atom/group type was
calculated and added; finally, multivariate linear regression analysis was applied to optimize the hydrophobic
parameters for different atom/group types and correction factors in order to reproduce the experimental log
P. The correlation based on the training set gives a model with the correlation coefficient (r) of 0.988, the
standard deviation (SD) of 0.368 log units, and the absolute unsigned mean error of 0.261. Comparison of
various procedures of logP calculations for the external test set of 138 organic compounds demonstrates
that our method bears very good accuracy and is comparable or even better than the fragment-based
approaches. Moreover, the atom-additive approach based onSASAwas compared with the simple atom-
additive approach based on the number of atoms. The calculated results show that the atom-additive approach
based onSASAgives better predictions than the simple atom-additive one. Due to the connection between
the molecular conformation and the molecular surface areas, the atom-additive model based onSASAmay
be a more universal model for logP estimation especially for large molecules.

INTRODUCTION

Log P has been widely used as a measure of hydrophobic-
ity or lipopilicity, which is the ratio of a chemical’s
concentration in then-octanol phase to its concentration in
the aqueous phase of a two-phase system at equilibrium.1,2

Pioneering work by Hansch and Leo has led to the use of
log P in quantitative structure-activity relationships (QSARs),
as a general description of cell permeability.3 Up to now,
log P has been widely used to access biological properties
relevant to drug action, cellular uptake, metabolism, bio-
availability, and toxicity.

The advent of combinatorial chemistry and the increasing
applications of QSAR evaluation have been increasing
requirement for fast and accurate theoretical estimation of
log P and other relevant molecular properties. Computational
methods for the assessment of logP date back to 1964 when
Fujita et al. correlated differences between benzene and
substituted benzenes to experimental data of logP and
extrapolated these correlations for predicting logP in other
series, leading later on to the development of the CLOGP
method.4 Since then, tremendous efforts in the past by
theoretical chemists led to several useful computational
methods for estimating logP values of organic compounds.
At present, the most widely accepted method is classified

as the “additive method”, where a molecule is dissected into
basic fragments (functional groups or atoms) and its logP
value is obtained by summing the contributions of each
fragment. According to the basic units dissected, the additive
method can be divided into two categories: the fragment-
based methods and the atom-based approaches. The frag-
ment-based method originated with Rekker and co-workers5,6

has become a standard calculation procedure and is available
in many common software packages. This method involves
the estimation of logP based on the contributions of
functional groups and fragments attached to a base molecule.
Current popular fragment-additive methods include CLOGP,7,8

KLOGP,9 KOWWIN,10 CHEMICALC-2,11 etc. The atom-
based method was developed by Broto and later refined by
Ghose and co-workers. This method assigns to the individual
atoms in the molecular additive contributions to molecular
logP.Atom-additivemethodsincludeALOGP,12-14SMILOGP,15

XLOGP,16 and VLOGP.17 There are also methods that try
to incorporate molecular properties into the calculation, such
as HINT18 and ASCLOGP.19 Moreover, several attempts
have been made to calculate logP from free energies by
molecular dynamics or Monte Carlo simulations,20-22 but
their extension to larger systems is limited by available
computer resources and predictive precision.

In our previous work of the relationships between the
brain-blood concentration ratio (BB) of 96 structurally
diverse compounds with a great number of structurally* Corresponding author e-mail: xiaojxu@chem.pku.edu.cn.
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derived descriptors,23 we found that logP was very crucial
to logBB. When we constructed the linear correlation models
of log BB, the ALOGP approach proposed by Crippen et
al.12-14 was used to calculate logP using the Cerius2
molecular simulations package.24 The reliability of the
commercial software prevents us to develop an automatic
program software to estimateBB as a high throughput
fashion. So the first aim of the paper is to develop a simple
procedure to estimate logP as an automatic fashion, thus
the program can be embedded into other programs developed
by us to predict logBBor other ADME properties concerned
with log P. Recently, we reported an additive-constitutive
approach to predict aqueous solvation.25,26 Our method is
based on atom-weighted solvent accessible surface area
(SASA). Moreover, we also found that the solvation model
based on the addition ofSASAis much better than the
solvation model based on the simple atomic addition of the
number of atoms (NA). Especially for large molecules such
as proteins, the solvation model based on simple atomic
contributions usingNA nearly does not bear any predictive
ability. So the second aim of this paper tries to construct a
prediction model of logP based onSASA. And we also want
to know if the prediction model of logP based onSASAis
better than that based onNA for organic molecules.

METHODS

Data Set.The reliability of the training set is crucial to
the accuracy of the final empirical model for logP calcula-
tion. Among all the 1850 compounds in the training set, the
structures of the former 1831 ones were obtained from the
combined collections of Suzuki and Kudo11 and Klopman.9

These 1831 compounds have also been used as a training
set in developing the XLOGP model.16 Since there were only
several phosphorus-containing compounds in the data set
afforded by refs 9 and 11, we have added some additional
phosphorus-containing compounds. Here, the experimental
log P values were obtained from Hansch and Leo’s compila-
tion.27 It should be noted that all compounds in the training
set do not include any metal atoms or ions. The molecular
geometries of all compounds were fully minimized using
molecular mechanism with MMFF force field.28 The models
were then saved in a MACCS sd database for further
analysis. The molecules and the experimental logP values
are listed in Table A. Table A and the MACCS sd database
file are available in the Supporting Information.

Atom Typing Rules and Solvent Accessible Surface
Area (SASA) Calculations. The final atom classification
system has 100 basic atom/group types. It is comprehensive
for the elements commonly found in organic molecules (C,
H, O, N, P, S, and halogens). To allow for portability and
simple implementation of the classification system, all atom
types are presented in SMARTS strings (in Table 1). The
atom types represented by SMARTS strings were determined
by using the SMARTS system included in OELib.29 SMARTS
is a language that allows you to specify substructures using
rules that are straightforward extensions of SMILES. In fact,
almost all SMILES specifications are valid SMARTS targets.
As SMILES, in SMARTS one can use atomic and bond
symbols to specify a graph. However, in SMARTS the labels
for the graph’s nodes and edges (its “atoms” and “bonds”)
are extended to include “logical operators” and special atomic

and bond symbols; these allow SMARTS atoms and bonds
to be more general. Using SMARTS, flexible and efficient
substructure-search specifications can be made in terms that
are meaningful to chemists. In the current work, a parameter
file was used to store the SMARTS strings defined for all
atom/group types. If we want to add some new typing rules
or modify the typing rules, we only need to make minor
modifications to this parameter file.

If the log P of a molecule is calculated from the simple
atomic contributions ofNA, it can be described by

whereai is the contribution of atom typei, and ni is the
number of atoms with atom typei in a molecule. The
contribution for each atom type was determined by using
the multiple linear correlations. Equation 1 has been widely
used in most atom-additive approaches.

In the current work, we applied another atom-additive
model, and the logP values are not simple contributed from
the number of atoms with atom typei, while from the total
SASAof atom typei. So the logP of a molecule is described
as

wherebi is the contribution of atom typei, andsi is the total
SASAfor atom typei. Molecular solvent accessible surface
areas were calculated using the MSMS program,30 and the
probe radius was set to 0.5 Å with density of 3.0 vertex/Å2.
In the calculations, the surface component for each atom was
outputted.

Correction Factors. For many compounds, the model
described by eq 2 can give reasonably good results. But the
whole is often more than the sum of its parts, and it has
become apparent in logP calculations. Usually, for various
compounds, the logP values obtained by summing the atom/
fragment contributions alone deviate significantly from the
experimental values. This is sometimes explained by the
inter- or intramolecular group-group interactions. In the
current work, to consider the intermolecular hydrophobic
interactions and intramolecular hydrogen bonds, we intro-
duced two correction factors.

(1) Hydrophobic Carbon. For many compounds with
hydrocarbon chains, their hydrophobicities are often under-
estimated by only using the summation of atomic contribu-
tions alone. The large deviation between experimental and
predicted hydrophobicity may be introduced by the aggrega-
tion of these compounds in aqueous phase. This correction
factor has been widely introduced by most additive meth-
ods.16 Here, we defined the sp3- or the sp2-hybridized carbon
without any attached heteroatom (any atom other than
carbon) with the 1-4 relationship as the “hydrophobic
carbon” (see Figure 1). It should be noted that sp2-hybridized
aromatic carbons were not considered as hydrophobic
carbons. Moreover, the sp2-hybridized carbon in the ring was
also not considered as a hydrophobic carbon, because the
sp2-hybridized carbon in the ring was relatively rigid and it
was not easy to adjust conformation to form aggregation.

(2) Intramolecular Hydrogen Bond. As being well-
known, the intramolecular hydrogen bond in a compound

log P ) ∑
i

niai (1)

log P ) ∑
i

bisi (2)
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Table 1. Atom Typing Rules and Their Contributions to logP in SLOGP

contribution contribution

type descriptiona
no. of

compds
freq

of use 1d 2e type descriptiona
no. of

compds
freq

of use 1d 2e

sp3 Carbon in
1 CH4(π)0),b CH3R(π)0), 565 1507 0.0103-0.1021 6 CA2X2 4 4 -0.0566 -0.7663

CH2R2(π)0), 7 CAX3 80 87 -0.0404 -0.4750
CHR3 (π)0) 8 CX4 8 8 -0.0018 -0.1718

2 CH3R,CH2R2,CHR3 (π*0) 414 542 0.0102-0.1297 9 CH3X 344 486 -0.0018 -0.4927
A3-C-CdR 10 CH2AX, CH2X2 564 804 -0.0080 -0.4586

3 A3-C-C)[N,O,S] 284 325 -0.0093 -0.5937 11 CHA2X 190 348 -0.0036 -0.2718
4 A3-C-Ct[C,N] 10 11 -0.0226 -0.7072 12 CH2AX, CH2X2 75 75 -0.0103 -0.1822
5 CA3X 30 32 -0.3533 -0.2801

sp2 Carbon in
13 R)CH2 41 52 0.0095 0.0240 22 [O,N])CA2 86 88 0.0566 0.2512
14 R)CHA 85 130 0.0074 -0.0099 23 A-COO 203 211 0.0352 0.0089
15 R)CHX 29 32 -0.0018 -0.1420 24 O)CCsp2

c 58 68 0.0299 -0.1111
16 N)CHA 8 8 0.0221 0.0629 25 O)CH-c, O)CH-n 169 185 0.0628 0.2858
17 R)CH-c, R)CH-(CdC) 48 58 0.0250 0.2423 26 O)C(A)-N 203 242 0.0053 -0.1933
18 R)CA2 10 10 -0.1267 -0.4647 27 O)CHA 22 22 0.0253 -0.0080
19 R)C(A)-c, RdC(A)-C)*, 8 10 -0.0303 -0.1129 28 O)CHX 14 14 0.0054 -0.3979

R)C(A)-Ct* 29 [O,N])CX2 174 176 0.0244 0.0095
20 R)C(A)-CdO 12 15 -0.0867 -0.4331 30 S)CH2, S)CHA, S)CA2 12 12 -0.0354 0.2134
21 A)CAX, A )CX2 20 23 0.0300 0.0443 31 OdS-CA3, OdP-CA3 22 24 -0.0244 -0.7622

sp1 Carbon in
32 RtCH 4 4 0.0011 -0.0229 33 AtCA 6 8 0.0505 0.6135

Aromatic Carbon in
34 c‚‚‚cH‚‚‚c 1382 6103 0.0166 0.1154 41 Xr‚‚‚c(X)‚‚‚Xr 83 87 0.0595 0.6371
35 c‚‚‚cH‚‚‚Xr 254 362 -0.009 -0.3929 42 c‚‚‚c(c)‚‚‚c 165 309 0.0549 0.2835
36 Ar‚‚‚cH‚‚‚Xr, Ar‚‚‚c(A)‚‚‚Xr 76 93 0.0234 0.3106 43 c‚‚‚c(F)‚‚‚c 43 53 -0.0011 -0.0355
37 c‚‚‚c(R)‚‚‚c 738 943 0.0177 0.0525 44 c‚‚‚c(Cl)‚‚‚c 176 270 0.0507 0.2518
38 c‚‚‚c(X)‚‚‚c 1017 1552 0.0034-0.0701 45 c‚‚‚c(Br)‚‚‚c 60 77 0.0660 0.2647
39 c‚‚‚c(R)‚‚‚Xr 57 63 -0.0411 -0.4528 46 c‚‚‚c(I)‚‚‚c 34 35 0.0767 0.4389
40 c‚‚‚c(X)‚‚‚Xr 143 186 0.0191 0.0263

sp3 Oxygen in
47 R-OH 201 287 -0.0314 -0.5419 50 R-O-R 308 369 -0.0015 0.0882
48 c-OH 200 218 0.0093-0.0791 51 A-O-CdO 444 463 0.0061 0.1049
49 N-OH 10 10 -0.0575 -0.7673 52 R-O-X, X-O-X 28 60 0.0098 0.1144

sp2 Oxygen in
53 O)C 774 923 -0.0546 -0.2391 55 O)[N,O,P] 106 201 -0.0574 -1.6017
54 O)c 74 103 -0.0938 -0.8095 56 o 12 12 0.0388 0.3368

Hydrogen in
57 H 1838 16182 0.0587 0.2239 59H-N 692 1217 -0.0438 -0.4089
58 H-OH, H-SH 406 520 -0.0671 0.0000 60 H-OCdO 219 230 -0.0712 -0.1697

sp3 Nitrogen in
61 R(π)0)-NH2 46 46 -0.0303 0.1165 65 X-NH-R, X-NH-c, 410 4 0.0974 0.8524
62 R(π)0)-NH-R(π)0) 35 36 -0.0607 -0.0624 X-NH-X
63 NR3(π)0) 40 46 -0.1887 -0.2975 66 NR2X, NRX2, NX3 24 27 -0.2057 -0.9097
64 X-NH2 5 5 -0.0352 -0.0760

sp2 Nitrogen in
67 N 51 62 -0.0356 0.0583 73 OdC-N-R(π)0) 110 111 -0.0375 0.0364
68 c-NH2, R(π)0)-NH-c 190 203 -0.0135 0.3777 74 OdC-NA2 4 6 -0.2054 -0.2618
69 c-NH-c 9 9 0.0193 0.4608 75 OdC-NA-R(π)0) 21 21 0.0590 -0.0593
70 R(π)0)-N-R2(π*0), 14 14 0.3811 0.6875 76 OdC-N-R2(π)0) 36 36 -0.3997 -0.3826

NR3(π*0), 77 R-N)R 30 30 -0.0889 -0.4186
R2(π)0)-N-R(π*0) 78 X-N)R 44 45 0.0572 0.7570

71 OdC-NH2 89 95 -0.0077 0.3266 79 X-N)X 4 8 0.0191 0.1769
72 OdC-NH 133 154 0.0393 0.4108 80 A2-N-SdO, A2-N-PdO 75 87 -0.0412 0.0457

Aromatic Nitrogen in
81 n 220 243 -0.0084 0.1309 83 n‚‚‚c‚‚‚n 144 359 -0.0564 -0.2981
82 n‚‚‚n 32 52 0.0019 0.0570 84n‚‚‚n‚‚‚n 13 16 -0.0283 -0.3096

Sulfur in
85 A-SH 5 5 0.0214 0.6413 88 A-SO-A 5 5 0.0027 0.7619
86 SA2 77 85 0.0320 0.7129 89 A-SO2-A 81 88 0.1834 2.8385
87 S)R 23 23 0.0128 -0.1006

Phosphorus in
90 P 29 29 0.1444 0.6216

Halogens in
91 F 140 333 0.0419 0.5425 93 Br 87 110 0.0218 0.8958
92 Cl 238 421 0.0230 0.7049 94 I 40 41 0.0246 1.0340
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may weaken the electrostatic interactions between compound
and water and thus increase the hydrophobicity of a molecule.
It should be noted that the hydrogen bonds between organic
compounds and water are relatively significant, so only a
very strong intramolecular hydrogen bond can effectively
influence the H-bond interactions between organic compound
and water. Here, we only defined intramolecular hydrogen
bonds for three kinds of compounds shown in Figure 2, and
we think that intramolecular hydrogen bonds in these
compounds are strong enough to effect the interaction
between compounds and water. We have tried other defini-
tions in our analysis, but they do not work as well as this
definition. The number of intramolecular hydrogen bonds
in each compound is calculated by using substructure
searching.

After including two correction factors, the logP is
described as

wherebi andci are regression coefficients,si is the totalSASA
of aotm typei, andBj is the number of the correction factor
of atom typej.

RESULTS AND DISCUSSION

The program, SLOGP v1.0, was developed in C++. The
program can read a single molecule or multiple molecules

(represented in single SYBYL/mol2 file, single MACCS/
mol file, SYBYL/mol2 database file, or MACCS/sd database
file), performs atom typing and surface calculation, detects
correction factors, and then calculates logP using the
parameters from multiple linear regression analysis. For each
molecule, the estimation of logP takes about 0.5 s on an
SGI O2 R10000 workstation. So our program can screen a
large database and construct the subdatabase meeting the
required range of logP values. Soon, the SLOGP program
will be embedded into our ADME prediction program as a
subroutine.

Prediction of log P. The initial model was based on the
summation of contribution ofSASAas eq 2, in which a total
of 100 atom types were used. This model yielded fairly
satisfactory results,n ) 1850, r ) 0.985,s ) 0.414,F )
585.989, which was comparable to or even better than those
obtained by other methods using similar strategies. From the
prediction, we found that for many hydrocarbons or com-
pounds with long hydrophobic aliphatic chains and some
compounds with intramolecular hydrogen bonds, the pre-
dicted values deviate much from the experimental values.
In such cases, we introduced two correction factors to
account for the possible intra- or intermolecular interactions.
The two correction factors are found to be statistically
significant in multivariate regression analysis. The final
model for logP calculations was obtained by correlating the
total SASAof 100 atom/group types and the frequencies of
two correction factors with the experimental logP values.
The list of contributions for the final fit and number of
molecules containing each atom type and correction factors
is included in Tables 1 and 3. The final model with eq 3
produced better results than those with eq 2:n ) 1850,r )
0.988,SD) 0.368,F ) 702.218, which bears comparative
statistical significance with the latest CLOGP model (n )
12 546; r ) 0.986; SD ) 0.30).31 Figure 3 shows the
correlation between the experimental and calculated logP
values. Figure 4 shows a histogram of the deviation of the
calculated values from the experimental results, where a near-
Gaussian error distribution curve centered as zero can be
seen. To further test the robust of the model, we have
performed leave-one-out cross-validation on the whole
training set, which give nearly the same results with the
multivariate regression analysis (q ) 0.983). The experi-
mental and calculated logP values using the final model
are summarized in Table A in the Supporting Information.
The final model predicts well for most of the 1850
compounds in training set, but as listed in Table 4, 29
compounds showed deviations greater than 1.0 log unit. Now

Table 1 (Continued)

contribution contribution

type descriptiona
no. of

compds
freq

of use 1d 2e type descriptiona
no. of

compds
freq

of use 1d 2e

United Atom Types
95 A-NO2 28 84 -0.0029 -0.0362 98 -NO 37 80 0.0063 0.2041
96 c-NO2 114 387 0.0083 0.1176 99 -NCS 23 72 0.0260 0.5191
97 -CN 79 168 0.0010 0.0141 100 -NH2, -COOH 14 42 -0.0927 0.7949

a Description: R represents any group linked through carbon; A represents any atom except hydrogen; X represents any heteroatom (O, N, S,
P, and halogens); c represents aromatic carbon; n represents aromatic nitrogen; Xr represents aromatic atom except aromatic carbon; o represents
aromatic oxygen;- represents single bond;) represents double bond;t represents triple bond;‚‚‚ represents aromatic bond. The atom described
is shown in bold.b π)0 represents that the atom hasπ electrons;π*0 represents that the atom has notπ electrons.c sp2 represents the hybridized
state.d The hydrophobicity using the atom-additive approach based onSASA. e The hydrophobicity using the simple atom-additive approach based
on the number of atoms.

Figure 1. The definition of hydrophobic carbons. Here X represents
a heteroatom. According to our definition, CB is a hydrophobic
carbon, CB is not because a heteroatom is within four atoms, and
CD is not because CD is sp2-hydridization and in a six-membered
ring.

Figure 2. The three kinds of intramolecular hydrogen bonds
considered in SLOGP.

log P ) ∑
i

bisi + ∑
j

cjBj (3)
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we cannot give an exact explanation of these deviations. They
may be brought by experimental errors, inadequate atom-
typing rules, or insufficient correction factors. Wang et al.
have used the former 1831 compounds in this training set to
develop the XLOGP model.16 From the calculations of
XLOGP, 42 compounds in the training set show deviation
of 1.0 log unit. From the number of compounds with large

predicted errors, it seems that our SLOGP model works better
than the XLOGP model.

Probe Radius.When we use a different radius of probe
to calculate the molecular surface, the totalSASAof the atom
type i in a molecule and the obtained coefficient should be
quite different. In our previous work, we have used eq 2 to
calculate the aqueous solvation free energy, and we found
that smaller probe radius could produce better correlation.25

The reason is that if we use a large probe radius, the
contributions of some interior atoms without accessible
surface areas are neglected. Here, to reduce the shield of
the hydrogen atoms to the interior atoms, in the calculations
of the solvent accessible surface area, the van der Waals
radius of hydrogen was manually adjusted from 1.2 to 0.9
Å.

Here, the influence of the probe radius to the calculated
results was investigated, and a different probe radius from
0.5 to 1.4 Å was used (Table 2). From the calculated results,
we found that a smaller probe radius could give a better
model, but the effect is not very significant. Only from the
mean unsigned errors and the standard deviations, a probe
radius of 0.5 Å is the best, so a probe radius of 0.5 Å was
applied forSASAcalculations. The results are generally in
good agreement with those in our previous work.24 But we
also found that the effect of the change of probe radius to

Table 2. Prediction Model Using Different Probe Radius

1 2 3 4 5 6 7 8 9a

probe radius (Å) 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4
r 0.988 0.988 0.988 0.988 0.988 0.987 0.987 0.987 0.987
SD 0.368 0.375 0.372 0.372 0.376 0.381 0.381 0.383 0.378
F 707.218 682.813 694.670 693.924 677.485 665.420 665.404 666.408 679.418
unsigned mean error 0.261 0.264 0.264 0.263 0.267 0.269 0.269 0.270 0.273

a The statistical significance of the model from the simple atom-additive approach based on the number of atoms.

Table 3. Correction Factor Used in SLOGP

description contribution
no. of affected

compds r F SD

Not Any Correction Factor
0.985 582.298 0.409

Hydrophobic Carbon
1a 0.162 71 0.986 609.074 0.398
2b 0.192 369 0.987 658.891 0.383

Intramolecular H-Bond
1c 0.792 36 0.986 612.896 0.397
2d 0.756 44 0.986 615.449 0.396
3e 0.688 60 0.986 617.534 0.395
4f 0.635 63 0.986 605.365 0.399
5g 0.592 64 0.986 609.687 0.398
6h 0.509 71 0.986 606.348 0.399

a The correction factor of “hydrophobic carbon” was applied to all
hydrocarbons.b The correction factor of “hydrophobic carbon” was
applied to all organic molecules.c The correction factor of “intramo-
lecular hydrogen bond” was applied to a in Figure 2.d The correction
factor of “intramolecular hydrogen bond” was applied to a and b in
Figure 2.e The correction factor of “intramolecular hydrogen bond”
was applied to a, b, and c in Figure 2.f The correction factor of
“intramolecular hydrogen bond” was applied to a, b, and c in Figure 2
and d and e in Figure 5.g The correction factor of “intramolecular
hydrogen bond” was applied to a, b, and c in Figure 2 and d, e, f, and
g in Figure 5.h The correction factor of “intramolecular hydrogen bond”
was applied to all kinds of possible hydrogen bonds defined in Figures
2 and 5.

Figure 3. Correlation between the experimental and calculated log
P values of 1850 compounds in the training set.

Figure 4. Distribution histogram of the estimation errors.
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log P is less obvious than that to aqueous solvation free
energy. The reason is that we adopted a smaller van der
Waals radius of hydrogen, and the interior atoms linked with
hydrogen element bear wider exposure and are not very
sensitive to the probe radius of solvent probe.

Atom Typing Rules. The solvation free energy of a
molecule transferring from vacuum to water orn-octanol
includes two parts: the electrostatic contribution and the
nonpolar contribution. The latter contribution is usually
modeled as proportional to the solvent accessible surface
area. In a simple atom-additive approach based onNA, the
electrostatic and nonpolar parts are actually taken into
account implicitly using different atom types. So we should
guarantee that the atoms belonging to the same atom type
have similarSASAand charge densities. In principle, different
atoms bear different partial charges. But if two atoms are
located in similar chemical environments, the partial charges
and SASA should be similar. According to the above
assumption, the definition of atom types may be the most
important thing in prediction of logP. Based on the above
discussions, we defined the atom types listed in Table 1.
The classification scheme differentiates atoms according to
(i) element, (ii) hybridization state, and (iii) nature of the
neighboring atoms. This establishes the rough theoretical
support for the assumption that a certain type of atom has a
specific contribution to the partition coefficient.

For the definition of the atom typing rules, we think two
aspects should be considered. First, the atom types for the

elements N and O should be carefully defined, because these
two kinds of elements bear strong polarity and relatively
complicated chemical environments. Besides the elements
C and H, the elements N and O may be the most important
constituent composition in organic molecules. Second, we
should carefully define the atom types in the conjugate
systems. The atom types in the conjugate systems show
obvious irregularity due to the charge flow along the
conjugate systems. For example, many compounds in the
training set possess a small conjugated ring with nitrogen
atoms. We know that the charge distribution of the aromatic
ring with different number of nitrogen atoms should be quite
different. For example, in a pyridine ring, there is only one
nitrogen atom; while in a pyrazine ring, there are two
conjugate nitrogen atoms. If we only define one atom type
for the nitrogen atoms in a pyridine ring and a pyrazine ring,
the nitrogen atoms in these two rings are actually forced to
be equivalent, and the contribution of the nitrogen atoms in
pyrazine to the hydrophobicity is two times that of one
nitrogen in pyridine. But in fact, due to the conjugate effect,
the partial charges on the nitrogen atoms in pyrazine are quite
different from those on the nitrogen atom in pyridine. So
the nitrogen atoms in pyridine and pyrazine should be defined
to different atom types. In the old atom typing rules, we only
defined one atom type for nitrogen in an aromatic ring
neighboring with two connected atoms. We found that the
calculated results for some compounds with heterorings were
not very good. Thus we defined several new types to
represent the nitrogen atom in a conjugate six-ring with
different neighboring atoms (see type 81, 82, 83, and 84 in
Table 1). Using the new atom typing rules, the mean
unsigned error was decreased from 0.267 to 0.261. The above
analyses show that the atom types in the conjugate system
should be carefully defined. We think that the insufficient
consideration of the conjugate systems may be one of the
most important factors that influence the quantity of the
prediction model of logP.

Any additive method, either by fragment or atom, needs
a relevant scheme for fragment/atom classification. The
quality of such a classification scheme can be evaluated by
how well the calculated logP values agree with their
experimental counterparts. To some extent, an additive
method is the art of fragment/atom classification. The
definition of atom types should be suitable, two few atom
types may not effectively represent the different chemical
environments. In recent work of Wildman and Crippen, the
authors present a new atom type classification system with
68 atom types for use in atom-based calculation of logP
and molar refractivity (MR).32 The 68 atomic contributions
to logP have been determined by fitting an extensive training
set of molecules, withr2 ) 0.918 andSD) 0.677. The model
proposed by Wildman et al. is obviously significantly worse
than that proposed by us. The reason is that the number of
basic types used by Wildman et al. is so few. Certainly, we
do not mean that more atom types can produce better results.
Sometimes, the two or several atom types are not fully
independent, and addition of redundant atom types cannot
effectively enhance the prediction of the model. The number
of atom types used here is smaller than Ghose’s set of 11014

and much smaller than Broto’s set of 222.33 However, using
less atom types does not weaken the power of our model
which yields satisfactory results even when we use the

Table 4. Compounds with Large Calculation Errors

no. name
log

Pactual
a

log
Pcalcd

b residue

442 Ado 1.05 2.05 1.00
451 DDAPR -0.52 -1.61 1.09
499 5-ethyl-6-azauracil 0.22-0.82 1.04
524 2,4,5-tribromoimidazole 1.96 2.97-1.01
554 Pyridazine -0.72 0.55 -1.27
557 2-pyrimidone -1.62 -0.59 -1.03
576 2-methyl-2-imidazoline -0.52 -0.63 1.15
688 picolinic acid -1.50 0.59 -2.09
737 6-aminonicotinamide -0.70 -0.68 1.38
757 pentylenetetrazole 0.14 1.22-1.08
876 benzohydroximic acid 0.26 1.51-1.25
906 2,4-diaminobenzoicacid -0.31 0.87 -1.18
966 2-trifluoromethyl-5,6-dinitro-

benzimidazole
3.89 2.07 1.82

967 4,5,6,7-tetrachloro-2-methyl-
benzimidazole

2.83 4.10 -1.27

983 m-trifluoromethyltrifluoromethane-
sulfonanilide

4.50 3.08 1.42

1392 benzoylacetone 2.52 1.40 1.12
1435 fusaric acid 0.68 2.34-1.66
1594 hydrazobenzene 2.94 4.33-1.39
1601 sulfsomidine -0.33 0.68 -1.01
1647 niflumicacid 1.59 4.16 -2.57
1676 1-(2-SO2Et-5-CF3-phenylhydrazono)-

1-cyanoaceticacidmethylester
4.22 2.91 1.31

1722 chlorambucil 1.70 3.44-1.74
1740 1-methyl-4-phenyl-7-chloro-

quinazolin-2-one
2.36 3.63 -1.27

1759 ambrosin 1.03 2.07-1.04
1793 desipramine 4.90 3.75 1.15
1813 buquinolate 2.18 3.65-1.47
1820 progesterone 3.26 4.46-1.20
1821 pipamperone 1.07 2.31-1.24
1824 etorphine 1.86 3.06-1.20

a log Pactual is the experimental value.b log Pcalcd is the predicted
value.
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addition of basic atomic contribution alone. We think that
after our iterative adjustment of atom types we have
developed each of them into a more elaborate class for log
P calculation.

It should be noted that the coefficients obtained by the
SLOGP model are quite different from those obtained by
other methods of logP based onNA, because they depend
not only on the number of atoms but also on the totalSASA.
For example, the presence of a halogen atom generally
increases the hydrophobicity by I> Br > Cl > F. But the
coefficient of F (0.0419)) is quite smaller than those of Cl
(0.0230), Br (0.0218), I (0.0246), because theSASAof F is
quite larger than those of the other three kinds of halogen
atoms. If we use the additive model of eq 1, the coefficient
of halogens should be F (0.5425)< Cl (0.7049) < Br
(0.8958) < I (1.0340) (see Table 1), which is in good
agreement with the general concept.

Correction Factors. In the current work, we only used
two simple correction factors. The consideration of these two
correction factors can significantly improve the linear regres-
sion of the models. Overall, the standard deviation of the
entire training set is reduced to 0.368, and the unsigned mean
error is decreased from 0.294 to 0.261.

The correction factor of “hydrophobic carbon” is very
important in our model. First, we only introduced this
correction factor to aliphatic and aromatic hydrocarbons.
After considering the hydrophobic carbon, the correlation
of the model was improved obviously (see Table 3). But
from the prediction of model, we also found that some
compounds of heteroatom-containing series, especially those
bearing long aliphatic chains, were greatly underestimated.
We think these long aliphatic chains can also introduce
intermolecular aggregation. So we extended the hydrophobic
carbon to all kinds of organic compounds: if there is no
heteroatom at a certain range, a carbon atom is a “hydro-
phobic carbon”. Adopting the new concept, the correlation
of the model was further improved, and the multivariate
regression analysis generate a model withr ) 0.987,SD)
0.383, andF ) 658.891.

The introduction of the correction factor of “intramolecular
hydrogen bond” can significantly improve the correlation of
the model. But we found that not all possible intramolecular
hydrogen bonds should be considered. Here, we defined that
either the donor or the acceptor atom should be linked
directly to a ring, and the ring serves to immobilize the
orientations of the donor and the acceptor. Moreover, the
two neighboring atoms in the ring should be sp2 hybridized,
which ensures that the intramolecular hydrogen bond could
form a plane five- or six-membered ring. In our fitting
process, we totally considered eight kinds of intramolecular
hydrogen bonds (see Figures 2 and 5), but our calculated

results show that only three kinds of intramolecular hydrogen
bonds in Figure 2 should be included in linear fitting (see
Table 3). The calculated results in Table 3 are not strange,
because the three kinds of hydrogen bonds in Figure 2 are
stable than those in Figure 5. The contribution of this
correction factor is 0.688, which is very close to that reported
by Leo, 0.63.34

Comparison with Other Methods. Only from the cor-
relation between the experimental logP and the calculated
values, our SLOGP model is very significant. But it is well-
known that the actual prediction power may only be
determined based on a list of compounds as the test set.
Moreover, we want to know if our model can give compara-
tive prediction with other logP calculation procedures.

The test compounds used here were cited from Mannhold
et al.35 The database of 138 test compounds comprises 90
simple organic structures and 48 chemically heterogeneous
drug molecules (beta-blockers, class I antiarrhythmics, and
neuroleptics). The reason that we selected this set of
compounds is that Mannhold et al. compared 14 calculation
procedures by comparing their predictions to these 138
compounds with experimental logP values from the
literature. The methods compared by Mannhold et al. are
well-established, commercially available procedures, which
can be roughly grouped into three categories: atom-based,
fragment-based, and conformation-dependent approaches.

The molecular models of the 138 compounds were built
using Cerius2, stored in MACCS/sd format, and then
subjected to calculation. The predicted logP values of these
compounds are obtained by using SLOGP. The experimental
and calculated logP values are listed in Table B in the
Supporting Information. The calculated results for the
comparison of 14 logP calculation procedures studied by
Mannhold et al. were directed cited from ref 35, and the
predicted power of our SLOGP method was judged according
to the criteria used by Mannhold et al.: (1) The individual
estimation errors are grouped using Mannhold’s: errors less
than(0.50 are considered as acceptable; errors greater than
(0.50 and less than(1.00 are considered as disputable; and
errors exceeding(1.00 are considered as unacceptable. The
missing calculations are also counted. All these results are
given as a percentage of the entire test set. (2) The
experimental and the calculated logP values are correlated
using linear regression analysis. The statistical results (i.e.
r, SD, and F-value) are recorded. The mean squared
deviations (MSD) are also calculated. All the results are
summarized in Table 5.

Table 5 shows that the SLOGP model can give very good
results to these compounds in test set. The correlation
coefficient (r ) 0.974) is higher those of the other approaches
except the KOWWIN model. From the mean square devia-

Figure 5. The other five kinds of intramolecular hydrogen bonds in our fitting process.
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tion and standard deviation, the SLOGP model is better than
the other models. From the calculated results, our method
performs much better than the other four atom-based methods
and gives comparative results with the fragment-based
approach with the best performance. It should be noted that
in 1995, Leo pointed out that the logP values for several
compounds in the test sets might exist serious errors. We
know that if the solute cannot be measured at a pH where it
is essentially uncharged, then if an accurate pKa is available,
a correction can be made for the amount of neutral form
present. For example, propafenone (compound102 in Table
B) has a pKa of 9.62 and was partitioned at pH 5.0. So the
hydrophobicity of the neutral propafenone should be greatly
overstated. The CLOGP method estimates it at 3.55 rather
than 4.63. Our SLOGP method give a predicted value of
3.59, which is quite close to the value predicted by CLOGP.
Similar to propafenone, the hydrophobicity of disopyramide
(compound93) should exist as a large error. It is interesting
to find that the predicted value by SLOGP (3.74) also exists
as a large difference with the experimental value (2.58).
When the two drugs without reliable neutral values are
removed from the linear regression, the predicted ability of
SLOGP was improved further (n ) 136, r ) 0.987,SD )
0.300,F ) 2970.40). Moreover, not considering these two
possible outliers, the prediction to these 138 compounds also
may not give a decisive rank of all these logP calculation
procedures because the number of compounds in the test set
is rather limited. But the comparison at least demonstrates
that SLOGP gives the best results among all these methods
and yielded acceptable estimations for the tested compounds.

In Mannhold’s work, he concluded that the predictive
power of the calculation procedures should be ranked as
fragment-based> atom-based> conformation-dependent
approaches according to the calculated results. From prin-
ciple, the fragment-based approach can give better consid-
eration of the electrostatic distribution than the atom-based
ones. From this point of view, we also think that the
fragment-based approach is more superior than the atom-
based one. But we do not think that logP calculations will

be completely dominated by the fragment-based methods
because the atom-based methods have some characteristics,
while the fragment-based methods do not have. First, for a
fragment-based method, the classifications of the basic
fragments are very difficult, and an additive method will not
be able to do the calculation for any compound containing
a “missing fragment”. So, sometimes the fragment-based
approach may not calculate the compounds with undefined
fragment. But for an atom-based method, the description of
an atom type is very simple. Second, the programming and
extension of the atom-based approach is much simpler and
easier than the fragment-based approach. For example, in
our program, based on OElib, the definition and the deter-
mination of the atom types are very simple, and the whole
program is very short and easy to be interpreted. Third, in
some applications of hydrophobic parameters such as the
molecular lipophilicity potential (MLP) approaches, the use
of atom-centered parameters is preferred.

Last, it should be noted that although the training set used
here is largely cited from Wang et al.,16 the SLOGP model
is quite different from the XLOGP model. First, in our
method, we used a more effective way to define atom types.
We defined two parameters files: one named def.dat saving
atom-typing rules and the other named suf.dat saving
hydrophobicity for each atom type. When users want to
define new atom types and get new parameters for newly
defined atom types, they only need to give little changes to
these two files. While in the XLOGP method, the atom
typing rules are hidden in the main program, and the original
model is very difficult or even impossible to be modified or
extended. Second, SLOGP only includes a single program
written in C++, and all libraries used are employed from
OElib. So our method can be simply embedded into other
program. Third, because XLOGP adopted the atom typing
rules in SYBYL, it can only support SYBYL/MOL2 format,
while SLOGP supported many kinds of formats of molecular
structures. The last, the SLOGP model, was obtained by
correlatingSASAof 100 atom types with the experimental
log P, notNAof atom types used by XLOGP and other atom-
based approaches.

Table 5. Comparison of 15 logP Procedures for the Prediction of the Test Set

method acceptablea disputableb unacceptablec uncalculatedd MSDe rf SDg Fh ref

Atom-Based Methods
MOLCAD 68.1 20.3 11.6 0.0 0.334 0.932 0.439 911 33
Tsar2.2 68.1 20.3 11.6 0.0 0.345 0.937 0.438 987 14
PROLOG•atom 5.1 76.8 14.5 7.2 1.4 0.262 0.947 0.431 1164 14
SMILOGP 49.3 24.6 18.8 7.2 0.551 0.917 0.588 660 18
SLOGP 1.0 90.6 7.2 2.2 0.0 0.107 0.974 0.327 2510

Fragment-Based Method
PROLOGP•cdr 5.1 76.8 16.7 5.1 1.4 0.199 0.957 0.448 1472 40
∑f-SYBYL 81.9 13.8 4.3 0.0 0.200 0.959 0.444 1583 41
SANALOG 79.7 15.2 3.6 1.4 0.167 0.967 0.402 1919 41
PROLOGP•comb 5.1 81.2 15.2 2.2 1.4 0.184 0.960 0.387 1582 14, 41
CLOGP 4.34 84.8 10.1 3.6 1.4 0.156 0.965 0.398 1849 1, 8
KLOGP 84.1 13.8 0.7 1.4 0.134 0.966 0.362 1859 9
KOWWIN 90.6 5.8 3.6 0.0 0.113 0.974 0.334 2517 10
CHEMICALC-2 68.8 17.4 13.8 0.0 0.418 0.926 0.535 827 11

Conformation-Dependent Methods
HINT 68.1 15.9 13.8 2.2 0.454 0.912 0.682 665 18
ASCLOGP 55.1 28.3 15.2 1.4 0.583 0.873 0.771 431 19

a Percentage of acceptable results (estimation error< (0.50). b Percentage of disputable results (estimation error> (0.50 and< (1.00).
c Percentage of unacceptable results (estimation error> (1.00).d Percentage of uncalculated results.e Mean squared deviations.f Correlation coefficient
between the experimental and calculated logP values.g Standard deviations.h Fisher values.
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Comparison of Method Based onNA and That Based
on SASA. In the above several sections, we discussed the
model based onSASAaccording to eq 3. But in most atom-
based additive methods, we only simply correlatedNA of
atom types with the experimental logP according to eq 1.
Here, we also proposed a model based on eq 1 (see model
9 in Table 2). The model based onNA is worse than the
best model based onSASA, but the difference is not very
significant. It seems that both of the model based onNA
and the model based onSASAcan generate good results.
Actually, for small organic molecules, these two kinds of
models do not exist in large differences, because nearly all
atoms in small compounds are exposed to solvent. In fact,
even in the method based onNA, the atoms with the same
atom types should have not only similar solvent accessible
surfaces but also similar charge densities. But if we use the
method based onSASA, we only need to guarantee that the
atoms with the same atom types have similar charge
densities. For example, in most methods for logP calcula-
tions, the aliphatic carbons atoms with different hydrogen
atoms should be defined as different atom types, and the
hydrophobicity of carbon atoms clearly decreases in the
following order: -CH3, -CH2-, -CH<, >C<. In fact,
the order of the hydrophobicity is mainly induced by the
different exposure of an atom, which leads to different
electrostatic and van der Waals interactions between solvent
and solute. Here, in the method based onSASA, we only
define one atom type for the aliphatic carbon, and the
difference of the carbon atoms with different hydrogen atoms
are considered by differentSASA.

It should be noted that since the conformation of a
molecule may have a considerable influence on its liphophilic
nature,38 the method based onSASAshould be a more
universal model especially for large molecules such as
peptide. For the method based onNA, all atoms with the
same atom types are considered equivalently, which means
all atoms should be exposed to solvent. But we know if some
atoms in a molecule are surrounded by other atoms and
located in the interior of a molecule for example some atoms
in peptide or protein, these atoms contribute little or even
nothing to hydrophobicity. If we use the method based on
NA, these interior atoms are also equivalently considered as
the other atoms with the same atom types exposed to solvent.
But if we use the method based onSASA, the contribution
of the exposed atoms and the interior atoms can be separately
effectively. In our previous work,39 we compared the
performance of the methods based onNA and SASAthe
solvation free energy. We found that for small organic
molecules, these two methods did not exist in large differ-
ences if defined as suitable atom types, but for large
molecules the predictions of these two methods were quite
different; the calculated results by the method based onSASA
could give good correlation with the method by PBSA, but
those by the method based onNA did not show any
regularity. Similarly, for the prediction of logP, the method
based onSASAshould be more universal than the method
based onNA, especially for large molecules.

CONCLUSION

In the current work, the prediction model of logP,
SLOGP, was proposed to estimate the partition coefficient

of solutes in octanol/water, logP, automatically. The logP
of a molecule can be calculated based on different atom
types, correspondingSASA,and hydrophobicity parameters.
In our work, the definition of atom types was based on
SMARTS language in order to be unambiguous and allow
for simple portability. The prediction using the model gives
an average unsigned error of 0.261 and standard deviation
of 0.368. In this model, 100 atom types and two correction
factors were used to classify the various atoms in a molecule.
Compared to other methods, our method give comparative
or even better results.

For small organic molecules, our model based onSASA
gives better results than the model based onNA. Moreover,
the model based onSASA is a more universal model
especially for large molecules. The methods proposed here
and all the parameters for calculations on logP have been
incorporated into a computer program called SLOGP. The
SLOGP computer code can be obtained by contacting the
authors. In SLOGP, two sets of hydrophobicity parameters
are afforded: surf.parm and atom.parm. surf.parm is used
for log P using the method based onSASA, and atom.parm
is used for logP using the method based onNA. The SLOGP
program has been tested on IRIX and Linux operation
systems.

Supporting Information Available: The experimental
and calculated log P values for molecules of the training set
(Table A), the experimental and calculated log P values for
molecules in the test set (Table B), and the structures of the
training databases and the test set are saved in MACCS/sd
database format (the sd database files include the experimen-
tal log P values of all compounds). This material is available
free of charge via the Internet at http://pubs.acs.org.
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