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A novel method for the estimation of aqueous solubility was solely based on simple atom contribution.
Each atom in a molecule has its own contribution to aqueous solubility and was developed. Altogether 76
atom types were used to classify atoms with different chemical environments. Moreover, two correction
factors, including hydrophobic carbon and square of molecular weight, were used to account for the inter-/
intramolecular hydrophobic interactions and bulkiness effect. The contribution coefficients of different atom
types and correction factors were generated based on a multiple linear regression using a learning set consisting
of 1290 organic compounds. The obtained linear regression model possesses good statistical significance
with an overall correlation coefficient (r) of 0.96, a standard deviation (s) of 0.61, and an unsigned mean
error (UME) of 0.48. The actual prediction potential of the model was validated through an external test set
with 21 pharmaceutically and environmentally interesting compounds. For the test set, a predictiver )
0.94,s) 0.84, andUME ) 0.52 were achieved. Comparisons among eight procedures of solubility calculation
for those 21 molecules demonstrate that our model bears very good accuracy and is comparable to or even
better than most reported techniques based on molecular descriptors. Moreover, we compared the performance
of our model to a test set of 120 molecules with a popular group contribution method developed by Klopman
et al. For this test set, our model gives a very effective prediction (r ) 0.96,s ) 0.79,UME ) 0.57), which
is obviously superior to the predicted results (r ) 0.96,s ) 0.84,UME ) 0.70) given by the Klopman’s
group contribution approach. Because of the adoption of atoms as the basic units, our addition model does
not contain a “missing fragment” problem and thus may be more simple and universal than the group
contribution models and can give predictions for any organic molecules. A program, drug-LOGS, had been
developed to identify the occurrence of atom types and estimate the aqueous solubility of a molecule.

INTRODUCTION

The solubility (logS) of organic molecules in water should
be considered in the design of drugs, because this parameter
usually has a significant impact on many ADME-concerned
properties of drugs, such as uptake, distribution, transport,
and eventually bioavailability. In recent years, the develop-
ments of combinatorial chemistry and high-throughput
screening (HTS) give us more opportunities to synthesize
and give rapid and effective assay to thousands upon
thousands of compounds in a very short period.1 It has been
noticed that in order to obtain more drug-like molecules the
synthesis of combinatorial libraries tends to result in
compounds with suitable lipophilicity and aqueous solubility,
than with conventional synthetic strategies. Thus, computa-
tional screenings have been suggested and used to select
sublibraries with relevant physicochemical properties to the
range of known values, such as lipophilicity and solubility,
of the orally active drugs. Hence there is a strong interest in
fast, reliable, and generally applicable structure-based meth-
ods for prediction of aqueous solubility of new drugs before
a promising drug candidate has even been synthesized.

Until now, many methods have been proposed for the
prediction of solubility.2-20 These methods generally consist
of multiple linear regression (MLR) or artificial neural

networks (ANN) using various molecular descriptors. These
methods can be roughly divided into three categories: (1)
experiment-related methods, (2) descriptor-based methods,
and (3) group contribution methods. The first class of
techniques calculate aqueous solubilities using one or several
experimental physicochemical properties2-4 such as partition
coefficient, melting points, boiling points, or molar volumes.
These methods require some experimental values, so they
are not applicable to compounds not yet synthesized or
isolated. Therefore, these methods only have limited ap-
plications. The second class of methods generally uses a
diverse set of descriptors such as physiochemical descriptors,
molecular properties, and/or collection of relevant structural
features, which are correlated to activity by means of various
statistical techniques.5-14 The methods developed by
Huuskonen et al.,5,6 EcElroy et al.,7 McFarland et al.,8 Liu
et al.,9 Tetko et al.,10 Engkvist et al.,11 Yan et al.,12 Butina et
al.,13 and Wegner et al.14 belong to this class. The practical
superiority of this class of methods is that it does not require
the knowledge of any experimental data of the compound
because all descriptors needed are calculated directly from
a 2D or 3D molecular structure. However, this class of
methods bear their inherent deficiencies. First, they usually
need many molecular descriptors, which may be difficult to
be calculated or can even be obtained using commercial
software. For example, in the work of Engkvist et al., the
authors used a total of 63 physicochemical and topological* Corresponding author e-mail: xiaojxu@chem.pku.edu.cn.
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descriptors. The dependence of the descriptors calculated
from other theoretical models prevents us from estimating
the solubility of a molecule using the model from a reference
or develop a program to estimate solubility as an automatic
fashion. Second, the prediction precision should be affected
by the prediction precision of descriptors used in the model.
For example, in a logSprediction model, partition coefficient
(logP) is a very important descriptor. If to some molecules
the predictions of logP are very poor, then the resulting
solubility may be poor also. Third, the relationship between
the descriptors and the aqueous solubility is usually not
straightforward. The third class of methods for prediction
of aqueous solubility is based on group contribution.15-20

They allow the approximation calculation of solubility by
calculating the contribution of relevant substructual units of
compounds. The methods proposed by Nirmalakhandan et
al.,15 Suzuki et al.,16 Kuhne et al.,17 Lee et al.,18 and Klopman
et al.19,20 belong to this category. Among all these methods,
only the Klopman’s mode is a pure and general group
contribution model without using additional experimental
parameters. In the newest version of the Klopman’s model,
the authors used a set of 118 functional groups.20

Group contribution methods may be the most practical
means of estimating aqueous solubility. The superiority of
this class of methods is that they do not need any descriptors
based on other theoretical models. Moreover, this class of
methods only needs to count the occurrence of functional
groups in a molecule, so they are extremely time-saving. The
shortcoming of this approach is also obvious. First, they
require a large data set to obtain a contribution of each
functional group. Second, they may contain a “missing
fragment” problem, which means that if a compound contains
a missing fragment which can be defined by the group
contribution model, its aqueous solubility cannot be precisely
predicted. In our previous work, we proposed a new atom-
additive method for calculating octanol/water partition coef-
ficient (logP) of organic compounds.21 The method, SLOGP
v1.0, gives logP values by summing the contribution of atom-
weighted solvent accessible surface areas and correction
factors. Because of the good correlation between logP and
water solubility and the successful application of the atom
additive method to the calculation of logP values of organic
molecules, we believe that the water solubility of organic
compounds can be effectively predicted using simple atom
addition methods. So the first aim of this study is to construct
a robust predictive model of aqueous solubility only based
on simple atom contribution. Certainly, the basic idea of the
atom contribution in this paper is indeed not novel, and this
procedure has been successfully applied in the estimation
of logP.21,22Furthermore, we attempt to develop an automatic
procedure of logSprediction, which can be easily used and
extended by other researchers and easily integrated within
the suite of ADME prediction developed in our group.21,23,24

METHODS

Data Sets.In the development of the atom contribution
model, we worked with the Tetko data set.10 The aqueous
solubility was expressed as logS, whereS is the solubility at
a temperature of 20-25 °C in mol/L. The original source of
the Tetko data set was based on the date set afforded by
Huuskonen et al.6 The Huuskonen data set includes 1297

diverse compounds taken from the AQUASOL database of
the University of Arizona25 and the PHYSPROP database.26

After the revision of Tetko et al., two repetitions including
284 and 522, one NO-oxide compound (minoxidil), one
organo-metal (Sn) compound (cyhexatin), and two inner salts
(betaine and cephaloridine) were eliminated. Moreover, in
the Tetko data set lindane was indicated twice and was also
eliminated from the data set. Finally, the whole date set used
for the model development in this paper includes 1290
organic compounds. The data set was converted from the
SMILES flat file representation27 to the MACCS/sdf struc-
tured data file using the Weblabview program developed by
Accelrys.28 All molecules were converted successfully. The
molecular geometries of all compounds were fully minimized
using a molecular mechanism with a MMFF force field.29

The molecules and the experimental logS values are listed
in Table A. Table A and the MACCS/sdf database file are
available in the Supporting Information. It should be noted
that in the current work, only the 2D topology information
of molecule is required, but if other researchers need the
precise 3D structures of these compounds, they can use the
structures afforded by us directly.

Based on the data set, three models were developed for
solubility prediction. In the first model, the whole data set
was divided into a training set of 878 molecules and a
validation set of 412 molecules. The 878 molecules were
used to obtain the prediction model, and the 412 validated
molecules were used to test the prediction potential of the
obtained model. The classifications of the training set and
the test set used here are the same as those used in Tetko et
al. paper.10 In the second model, all molecules in the data
set were used in a linear fitting to obtain the final model. In
the third model, 1207 molecules were used to obtain the
prediction model, and the other 83 molecules were eliminated
from the learning set because these 83 molecules have been
included in the second test set used by Klopman et al.20 The
molecules in the second test set were not included in the
learning set, and thus they can be used as an independent
test set.

We used two test sets to validate the actual prediction
potential of our model. The first test set is a 21-member test
set consisting of drugs and other environmentally interesting
compounds such as pesticides. They were selected by
Yalkowsky as a challenging test set of complex chemical
structures for the validation of solubility models.30 The
second test set includes 120 compounds, which has been used
by Klopman et al. in the validation of the group contribution
model.20 The reason that we selected these 120 molecules
as the second test set is that we want to make a direct
comparison between the prediction potential of the Klop-
man’s group contribution model and that of the atom
contribution model developed in this paper. The molecules
in these two test sets were saved in two MACCS/sdf files.
The molecules and the experimental logS values are listed
in Tables 2 and 3. The MACCS/sdf files are available in the
Supporting Information.

Atom Typing Rules and Correction Factors.In a group
or atom addition model, the aqueous solubility values are
computed from an equation as follows

logS) CD + ∑
i

niai (1)
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where logS is the logarithm of the solubility;C0 is a constant
characteristic of solvent;ai is the contribution coefficient of
the ith group or theith atom type in a molecule; andni is
the number of occurrences of theith group or theith atom
type in a molecule. The contribution for each group or atom
type is determined by using a multiple linear regression
(MLR) or other statistical techniques.

According to eq 1, different atom types should have
different contributions to solubility. Here, we defined 76
basic atom types for the elements commonly found in organic
molecules (C, O, N, P, S and halogens). The classification
scheme differentiates atoms according to (i) element, (ii)
hybridization state, and (iii) nature of the neighboring atoms.
This establishes the rough theoretical support for the as-
sumption that a certain type of atom has a specific contribu-
tion to the aqueous solubility. To allow for portability and
simple implementation of the classification system, all atom
types are presented in SMARTS.31 The SMARTS definitions
for all atom types are listed in Table 1. The atom types
represented by SMARTS were determined by using the
SMARTS system included in OELIB.32 More detailed
descriptions about SMARTS and OELIB can be found in
refs 31 and 32. Here, we did not define any atom types for
hydrogen atoms, which means that all heavy atoms connected
with hydrogen are united atom types. In fact, we gave
different definitions for heavy atoms connected with a
different number of hydrogen atoms, and thus the contribu-
tion for hydrogen is implicitly included in that of the central
heavy atom.

When we developed the logP prediction model using the
atom contribution approach,23 we found that the prediction
logP values for many compounds with hydrophobic carbon
atoms or intramolecular hydrogen bonds exist with large
differences in the experimental values. The large deviations
are sometimes explained by inter-/intramolecular hydropho-
bic interactions and intramolecular hydrogen bond inter-
actions. Here, we found that the inter-/intramolecular hy-
drophobic interactions can effect the prediction of logS, so
we introduced a correction factor named “hydrophobic
carbon”.

We defined sp3- or sp2-hybridized carbon without any
attached heteroatom (any atom other than carbon) with the
1-4 relationship as hydrophobic carbon. It should be noted
that sp2-hybridized aromatic carbons were not considered as
hydrophobic carbons. Moreover, the sp2-hybridized carbons
in the ring were also not considered as hydrophobic carbons,
because the sp2-hybridized carbon in the ring was relatively
rigid and it was not easy to adjust conformation to form
aggregation.

Here, we used another correction factor, which is the
square of molecular weight (MW2). In the work of Tetko et
al.,10 the calculated results indicate that molecular weight is
an important descriptor in prediction model. Here, we found
that the square of molecular weight was more effective than
molecular weight, so in the current work, MW2 is used as a
correction factor in the multiple linear correlations.

After including correction factors, the logS is described
as

whereC0 is a constant;ai andbi are regression coefficients;
ni is the number of occurrences of theith atom type in a
molecule, andBj is the number of occurrences of thejth
correction factor.

A program named LOGS-FIT was developed to identify
the occurrence of each atom type in a compound from sdf
files. A standard multiple linear regression analysis was used
to get the contribution for each atom type. The contribution
coefficient for each atom type was then used to give a
prediction for a new molecule.

RESULTS AND DISCUSSION

The program, drug-LOGS v1.0, was developed in C
programming language. The program can read a single
molecule or multiple molecules (represented in single
SYBYL/mol2 file, single MACCS/mol file, SYBYL/mol2
database file, or MACCS/sdf database file), perform atom
typing, calculate occurrences of each atom type, detect
correction factors, and then calculate logSusing the param-
eters from MLR. The drug-LOGS program has been embed-
ded into our drug-ADME program as a subroutine. Until
now, the drug-ADME program can give several important
ADME-concerned properties including logP, logS,and logBB
(blood-brain partitioning).

Prediction Models. Any additive method, either by
fragment or atom, needs a relevant scheme for fragment/
atom classification. The quality of such a classification
scheme can be evaluated by how well the calculated logS
values agree with their experimental counterparts. Here, the
training set of 878 molecules used by Tetko et al.10 was used
to determine the most suitable atom typing rules. Originally,
we used the atom typing system of the SLOGP model. In
SLOGP, we used an atom typing system of 100 atom types.
Using the SLOGP atom typing system, a fairly good
correlation between experimental and predicted solubility was
obtained (n ) 878, r ) 0.95,s ) 0.61), but we also think
that the SLOGP system needs more elaborate improvement.
Using the SLOGP atom typing system, the occurrence of
many atom types is very low, for example, the occurrence
of atom types 8, 69, 78, or 79 is only two times and that of
atom type 84 is only one time. Moreover, three atoms in the
training set were not defined using the SLOGP atom typing
system. Due to random correlation the obtained contribution
coefficients for these atom types with low occurrences may
exist with large deviations from the right answers. To get a
more reliable prediction model, we make some modifications
to the old atom typing system according to three principles.
First, enough occurrences of the atom types are necessary
to yield reliable results. Second, each atom type should be
independent, and the redundant atom types should not be
allowed. Third, the number of atom types should be
controlled to as few as possible in order to avoid overfitting
problem. According to the above principle, the atom typing
system was carefully adjusted. The final atom typing system
includes 76 atom types. The SMARTS definitions for these
76 atom types are listed in Table 1. When using the new
atom typing rules and two correction factors, the obtained
linear model for the training set with 878 molecules are
statistically significant (r ) 0.96,s ) 0.59).

In previous work of Tetko et al.,10 the authors used a
validation set of 412 compounds to optimize the training

logS) C0 + ∑
i

aini + ∑
j

biBj (2)
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Table 1. Atom Typing Rules and Their Contributions to logS

no. SMARTS representation occurrencea contribution1a occurrencea contribution2b

1 [CX4;H4] 199 0.277 301 0.273
1 [CX4;H3] 199 0.277 301 0.273
2 [CX4;H3][#6] 22 -0.045 36 -0.099
3 [CX4;H3][CX4,c,F,Cl,Br,I] 549 -0.392 838 -0.409
4 [CX4;H3][CX3,c,F,Cl,Br,I]) [#8,#7] 63 0.254 86 0.205
5 [CX4;H3][CX4,c,F,Cl,Br,I]∼[#8,#7] 203 -0.067 307 -0.059
6 [CX4;H2] 8 0.101 12 0.184
7 [CX4;H2][#6] 213 -0.089 303 -0.052
8 [CX4;H2]([#6])[#6] 65 -0.314 97 -0.179
9 [CX4;H2]([#6× 4,c,F,Cl,Br,I])[#6× 4,c,F,Cl,Br,I] 766 -0.307 1136 -0.334
10 [CX4;H2][#6] ) [#8,#7] 131 0.180 191 0.183
11 [CX4;H2][CX4,c,F,Cl,Br,I]∼[#8,#7] 79 0.061 107 0.051
12 [CX4;H2]([CX4,c,F,Cl,Br,I])[CX4,c,F,Cl,Br,I]∼[#8,#7] 244 -0.075 362 -0.094
13 [CX4;H2]-[OH,NH2,NH] 99 -0.066 157 -0.003
14 [CX4;H] 11 0.017 18 0.105
15 [CX4;H]([#6])[#6] 87 -0.149 135 -0.216
16 [CX4;H]([#6])([#6])[#6] 54 -0.025 91 0.113
17 [CX4;H]([#6× 4,c,F,Cl,Br,I])([#6× 4,c,F,Cl,Br,I])[#6× 4,c,F,Cl,Br,I] 238 -0.231 377 -0.201
18 [CX4;H1]-[OH,NH2,NH] 147 -0.368 211 -0.339
19 [CX4;H0] 30 -0.553 52 -0.526
19 [CX4;H0][#6] 30 -0.553 52 -0.526
19 [CX4;H0]([#6])[#6] 30 -0.553 52 -0.526
20 [CX4;H0]([#6])([#6])[#6] 65 -0.477 113 -0.491
21 [CX4;H0]([#6])([#6])([#6])[#6] 111 0.216 179 0.206
21 [CX4;H0]([#6× 4,c])([#6× 4,c])([#6× 4,c])[#6] 111 0.216 179 0.206
21 [CX4;H0]([#6× 4,c])([#6× 4,c])([#6× 4,c])[#6× 4,c] 111 0.216 179 0.206
22 [C;H2] ) * 38 -0.126 53 -0.227
23 [C;H1] ) * 152 -0.323 244 -0.332
24 [C;H0] ) * 112 -0.302 188 -0.275
25 [C;H1] ) O 23 -0.420 25 -0.419
26 [C;H0] ) O 331 -0.964 482 -0.950
27 [C;r] ) O 133 -0.915 217 -0.868
28 C(dC)dC 26 -0.379 39 -0.407
28 C#* 26 -0.379 39 -0.407
29 [c;H1](∼c)∼c 23 -0.227 34 -0.324
30 [c;H1;r6](∼c)∼c 2494 -0.310 3667 -0.307
31 [c;H1](∼c)∼[a;!c] 124 -0.021 167 -0.107
32 [c;H1](∼[a;!c])∼[a;!c] 25 -0.431 37 -0.602
33 [c;H0](∼[a;!c])∼[a;!c] 8 0.301 13 -0.206
34 [c;H0](∼[!#6])(∼[a;!c])∼[a;!c] 56 -1.022 78 -1.180
35 [c;H0](∼*)(∼c)∼c 139 -0.481 207 -0.416
35 [c;H0](∼C)(∼c)∼[a;!c] 139 -0.481 207 -0.416
36 [c;H0](∼[CX4,F,Cl,Br,I])(∼c)∼c 622 -0.226 940 -0.226
36 [c;H0](∼[CX4,F,Cl,Br,I])(∼c)∼[a;!c] 622 -0.226 940 -0.226
37 [c;H0](∼c)(∼[c])∼c 292 -0.700 429 -0.719
38 [c;H0](∼[!#6;!F;!Cl])(∼c)∼c 551 -0.359 816 -0.383
39 [c;H0](∼[!#6])(∼c)∼[a;!c] 69 -0.791 109 -0.856
40 [#8;H1] 99 0.564 154 0.460
41 [#8;H1]C 300 0.332 454 0.303
42 [#8;H0] 155 -0.306 239 -0.332
43 [#8;H0]CdO 111 -0.246 163 -0.239
44 [#8;H0]([#6× 4])[#6 × 4] 47 -0.299 73 -0.295
45 [#8] ) C 419 0.533 616 0.535
45 [#8] ) c 419 0.533 616 0.535
46 [#8] ) C([#6])[#6] 104 0.398 166 0.370
46 [#8] ) c([#6])[#6] 104 0.398 166 0.370
47 [o] 16 -0.561 29 -0.082
48 [OX1]∼S 98 -1.083 137 -0.092
48 [OX1]∼P 98 -1.083 137 -0.092
49 [OX2](*)[P] 21 -1.245 65 -0.690
50 [N;H2] 127 0.200 185 0.205
50 [N;H2][C] 127 0.200 185 0.205
51 [N;H1] 82 -0.025 108 -0.047
52 [N;H1]([#6× 4]) 42 -0.129 66 -0.122
53 [N;H1]([#6× 4])[#6 × 4] 5 0.078 6 0.006
54 [N;H1;r] 57 0.436 93 0.166
55 [N;H0] 8 0.447 11 0.210
56 [N;H0]([#6× 4]) 85 -0.387 125 -0.481
56 [N;H0]([#6× 4])[#6 × 4] 85 -0.387 125 -0.481
56 [N;H0]([#6× 4])([#6 × 4])[#6 × 4] 85 -0.387 125 -0.481
57 [N;H0;r]([#6× 4])([#6 × 4])[#6 × 4] 35 -0.026 44 -0.042
58 [n] 69 0.327 94 0.451
59 [n]∼[n] 147 0.064 204 0.196
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process of ANN. Here, we predicted the solubility of the
molecules in the validation set based on the contribution
coefficient from the training set. The predictions for the
validation set (r ) 0.95, s ) 0.63) are a little worse than
those for the training set. The good prediction for the test
set means that the obtained model is reliable. The contribu-
tion coefficient and the occurrence for each atom type and
correction factor are listed in Table 1. It seems that the
predictions to the validation set of 412 molecules using the
Tetko’s ANN model (r ) 0.96, s ) 0.60) are better than
those using the drug-LOGS model. It should be noted that
in Tetko’s work, the validation set employed is to control
the termination of the learning of ANN. The validation set
was really included in the model development. The prediction
used for the validation set was only the optimized results of
ANN, not the actual predicted results of the model. Because
of the good nonlinear regression ability of ANN, the models
produced by ANN may be very statistically significant, but
the actual prediction potentials of the models may be
questionable. For example, in the work of Engkvist et al.,11

the authors developed a model based on a training set of
1160 and a validation set of 130 using ANN. The average
squared correlation coefficient (r2) was 0.96 (standard
deviation 0.56) for the training set and 0.95 (standard
deviation 0.57) for the test set. Using the model, Engkvist
predicted the solubilities of a test set of 2767 molecules.
However, the result for the independent validation set was
rather poor, yielding a squared correlation coefficient of 0.79
and a standard deviation of 1.18. Therefore, the authors
developed a second model. This time the training set includes

3042 molecules and the test set includes 309 molecules. The
statistical significance of the second model is worse than
that of the first model. The average squared correlation
coefficient (r2) was 0.91 (standard deviation 0.84) for the
training set and 0.89 (standard deviation 0.87) for the test
set, respectively. But for the independent validation set of
307 molecules, a squared correlation coefficient of 0.86
(standard deviation 0.80) was obtained. The reason that the
first model performs worse for the test set is that the data
set used for learning is small, and thus overfitting problem
was encountered in the fitting of ANN.

Additionally, all molecules in the training set and the
validation set were used to develop the logS prediction
model. Based on the data set of 1290 molecules, we achieved
a regression coefficient of 0.96 and a standard deviation of
0.62, which is a little worse than the fitting calculated only
using the training set of 878 molecules (r ) 0.96,s ) 0.59).
To further test the robust of the model, we have preformed
a leave-one-out cross-validation on the whole data set, which
give nearly the same results of MLR (q ) 0.95,s ) 0.63).
The contribution efficient and the occurrence for each atom
type and correction factor calculated using the whole data
set are listed in Table 1. The correlation between the
experimental and the predicted logSvalues are illustrated in
Figure 2. According to Table 1, it can be found that for most
atom types the contribution coefficients do not exist with
large differences whether using 878 molecules or 1290
molecules. But for some atom types with low occurrences
the contribution coefficients exist with obvious differences.
For example, using 878 molecules the coefficient for type

Table 1 (Continued)

no. SMARTS representation occurrencea contribution1a occurrencea contribution2b

59 [n]∼[*] ∼[n] 147 0.064 204 0.196
60 [nH] 31 -0.182 49 -0.068
61 [N] ) * 20 -0.293 29 -0.245
62 N#* 12 0.255 17 0.166
62 N( ) *) ) * 12 0.255 17 0.166
63 [NX3](O)dO 28 -0.223 53 -0.139
63 [NX3](O)-O 28 -0.223 53 -0.139
64 [S;H1] 4 -0.436 6 -0.645
65 [S;H0] 49 -1.080 85 -1.118
66 s 22 -0.905 35 -0.696
66 [S;H0]1* ) ** ) *1 22 -0.905 35 -0.696
66 [S;H0]1*:**:*1 22 -0.905 35 -0.696
66 [S;H0]1* ) **:*1 22 -0.905 35 -0.696
66 [S;H0]1* ) *∼*∼* ) *1 22 -0.905 35 -0.696
66 [S;H0]1*:*∼*∼*:*1 22 -0.905 35 -0.696
66 [S;H0]1* ) *∼*∼*:*1 22 -0.905 35 -0.696
67 [SX3] ) [OX1] 50 1.802 68 -0.109
67 [SX4]( ) [OX1]) ) [OX1] 50 1.802 68 -0.109
67 [SX3]-[OX1] 50 1.802 68 -0.109
67 [SX4](-[OX1])-[OX1] 50 1.802 68 -0.109
68 [PX3] 10 1.578 26 0.510
68 [PX4] 10 1.578 26 0.510
69 [F] 49 -0.332 73 -0.293
70 [Cl] 127 -0.657 245 -0.705
71 [Br] 24 -1.006 39 -0.993
72 [I] 7 -1.886 9 -1.771
73 [F]c 14 -0.436 23 -0.438
74 [Cl]c 322 -0.954 472 -0.964
75 [Br]c 18 -1.276 28 -1.312
76 [I]c 15 -1.631 20 -1.514
78 hydrophobic carbon 997 -0.253 1497 -0.230
79 MW2 0.00008 0.00008

constant 0.500 0.518

a Based on a training set of 878 molecules.b Based on the whole data set of 1290 molecules.
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32 is -0.432, while using 1290 molecule, this value
decreased to-0.602. It is not strange because insufficient
samples in the data set may produce unstable results caused
by a random correlation of MLR. For MLR, sufficient
samples in the data set should be necessary in order to obtain
effective and reliable results. Here, the contribution coef-
ficients based on 1290 molecules should be more reliable
than those only based on 878 molecules, so in our logS
prediction model, the coefficients calculated using 1290
molecules were used.

It is very informative to study the contribution coefficient
of each atom type. For example, the solubility of halogen
atoms clearly decreases in the following order:-F (-0.293),
-Cl (-0.705), -Br (-0.993), -I (-1.771). With the
attachment to an aromatic ring the solubility generally lowers
the solubility of halogens besides I. The detailed information
obtained here can only be afforded by the atom/group
contribution approaches, while it cannot be afforded by the
experiment-related or the descriptor-based techniques.

Correction Factors. Here, to consider the intra-/inter-
molecular hydrophobic interaction and the bulk effect, we
considered two correction factors including hydrophobic
carbon and “square of molecular weight” in model develop-
ment.

The correction factor of hydrophobic carbon is very
important in our model. When we do not consider this
correction factor, the solubility of many compounds with
hydrophobic carbon or long aliphatic chains was greatly
overestimated. We think these molecules may introduce
intramolecular hydrophobic folding or intermolecular ag-
gregation and influence the experimental solubility. When
we do not consider any correction factor, based on the data
set of 1290 molecules a linear model withr ) 0.951 ands
) 0.651 was obtained. After introducing the correction factor
of hydrophobic carbon, the correlation of the model was
improved obviously, and MLR generates a model withr )
0.955 ands ) 0.624.

In the work of Tetko et al., the calculated results indicate
that molecular weight (MW) is an important descriptor in
prediction models. After introducingMW in fitting, we found
that the linear correlation of the model nearly does not have
any improvement (r ) 0.955, s ) 0.624). But if we
introduced the square of molecular weight (MW2) in fitting,
the linear correlation of the model increased a little (r )
0.956, s ) 0.621). So, in our work,MW2 was used as a
correction factor in the prediction of logS.

Actual Prediction of logS to Test Set 1.Only from the
correlation between the experimental logSand the calculated
values to the molecules in training set, our prediction model
is very significant. But it is well-known that the actual
prediction power may only be determined based on a list of
compounds as the test set. Moreover, we want to know if
our model can give comparative predictions with other logS
calculation procedures.

The contribution coefficients based on the data set of 1290
molecules were used to predict the solubilities of test set 1.
This test set was designed by Yalkowsky, which is compiled
of 21 commonly used compounds of pharmaceutical and
environmental interest.19 The reason that we selected this
set of compounds is that this test set was also used by several
other researchers.6,9,10,12,14,17,20The predicted and experimental
logSvalues of test set 1 are presented in Table 2 and Figure
2. They show that there is a significant correlation between
the predicted and experimental values (r ) 0.94,s ) 0.84).
However, the correlation is not as good as that of the data
set used for model development. Inspection of the results
indicates that three of the compounds were predicted poorly
with errors over one log unit; the worst is for phenolphthalein
with an error of 1.5 log unit.

Table 2 contains the corresponding linear coefficient (r)
and standard deviation (s) values using the other seven logS
prediction approaches. From Table 2, it can be found that
the correlation coefficient (r ) 0.94) of our model is higher
than those of the other approaches except for the Huuskonen’s
ANN model (r ) 0.95) and the Tetko’s ANN model (r )
0.95). From the standard deviation, our model (s ) 0.64)
performs similarly with the Huuskonen’s ANN model (s )
0.63) and the Tetko’s ANN model (s ) 0.64), while better
than the other models. It should be noted that the prediction
to these 21 compounds cannot give a decisive rank of all
these logS calculation procedures because the number of

Figure 1. The predicted versus observed aqueous solubilities for
the whole data set.

Figure 2. The predicted versus observed aqueous solubilities for
test set 1.
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compounds in this test set is rather limited. But the
comparison at least demonstrates that our model yielded
acceptable estimations for the tested compounds.

Actual Prediction of logS to Test Set 2.The second test
set of 120 molecules was used in the development of the
Klopman’s group contribution model.20 After careful obser-
vation, we found that 83 molecules in test set 2 are included
in our training set. So in order to make an unbiased
comparison between our model and the Klopman’s model,
we eliminated these 83 duplicates from the learning set, and
thus the new learning set only includes 1207 molecules.
Using the new learning set, we give a new fitting and
obtained the corresponding contribution coefficients. Now,
test set 2 can be used as an unbiased test of the accuracy of
our model. The results were then compared with those
obtained using the Klopman’s model.

The calculations results using these two models are listed
in Table 3. The correlation between the experimental and
the predicted logSvalues for test set 2 is illustrated in Figure
3. The standard deviation was found to be 0.76 with our
model. But with the Klopman’s model, the standard deviation
was found to be 0.84. It should be noted that the standard
deviation reported by Klopman et al. is 0.79, but when we
used the calculated results in ref 20 and performed a linear
fitting, we found that the standard deviation is 0.84, not 0.79.
Using our model, we achieved an unsigned mean error of
0.57 log unit, which is obviously better than that (0.70) using
the Klopman’s model. It is clear that our model may be more
effective than the Klopman’s model. The high correlation
coefficient (r ) 0.96) and low unsigned mean error (0.57)
show that the predicted results and the experimental values
are consistent. Among all those molecules, the predictions
for compounds 91, 92, and 102 are the worst. For these three
compounds, the unsigned mean errors between the predicted
and experimental values are larger than 2.0 kcal/mol. Among

these three compounds, compound 91 was also highly
underestimated by the Klopman’s model (error:-2.71 log
unit), and thus this compound may be treated as an outlier.
Not considering this compound, the linear correlation
between the experimental solubilities and the predicted values
increased from 0.94 to 0.96, and standard deviation from
0.79 to 0.74. Now we cannot give an exact explanation of
these deviations. They may be brought by experimental
errors, inadequate atom typing rules, or insufficient correction
factors.

The basic ideas of the Klopman’s model and our model
are similar, but the only difference is that the basic unit in
the Klopman’s model is a functional group while in our
model the basic unit is an atom. From principle, the group-
based approach may give a better consideration of the
electrostatic distribution and interactions between constituted
parts in a group than the atom-based ones. But for a
fragment-based method, the classifications of the basic
fragments are very difficult, and an additive method will not
be able to do the calculations for any compound containing
a missing fragment. So, sometimes the fragment-based
approach may not calculate the compounds with an undefined
fragment. For example, the old version of the Klopman’s
model cannot give predictions for many compounds with
missing fragments. But for an atom-based method, we can
give a full description of atoms with different chemical
environments very easily. Moreover, based on the limited
experimental data, we cannot define excessive types of
functional groups; otherwise, the obtained contribution
coefficient from multiple linear regressions may be not
reliable caused by overfitting. Furthermore, from the techni-
cal respect, the programming and extension of the atom-
based approaches are much simpler and easier than those
the fragment-based approaches. For example, in our program,
based on OELIB, the definition and the determination of the

Table 2. Observed and Predicted Aqueous Solubilities for Test Set 1 of 21 Compounds

Yan12 Huuskonen6

no. name logS_exp
Hou
MLR

Klopman20

MLR
Kühne17

MLR MLR ANN MLR ANN
Tetko10

ANN
Liu9

ANN
Wegner14

GA

1 2,2′,4,5,5′-PCB -7.89 -7.57 -7.90 -7.47 -7.12 -7.85 -7.40 -7.55 -7.21 -7.57 -7.55
2 benzocaine -2.32 -1.86 -1.71 n/aa -1.81 -2.19 -1.85 -1.45 -1.79 -1.63 -2.05
3 aspirin -1.72 -1.81 -1.52 -1.93 -1.44 -1.87 -1.74 -2.10 -1.69 -1.81 -1.81
4 theophylline -1.39 -0.97 -1.07 -0.54 -1.07 -1.27 -0.78 -0.73 -1.71 -0.69 -1.21
5 antipyrine -0.56 -1.39 -1.90 -2.99 -1.31 -1.20 -1.41 -1.29 -0.89 -1.74
6 atrazine -3.85 -3.79 -3.05 -3.95 -2.44 -3.83 -2.18 -1.51 -3.51 -3.70 -2.82
7 phenobarbital -2.34 -2.25 -2.08 -2.41 -2.81 -2.80 -2.88 -2.50 -2.97 -2.89 -2.36
8 diuron -3.80 -3.13 -2.85 -3.38 -3.26 -3.70 -3.20 -2.85 -2.86 -3.01 -3.31
9 nitrofurantoin -3.47 -3.21 -2.19 -2.62 -0.45 -2.52 -3.03 -2.89 -3.42 -3.09 -2.82
10 phenytoin -3.99 -3.33 -3.47 -5.25 -2.99 -3.18 -3.48 -3.09 -3.40 -3.52 -2.90
11 diazepam -3.76 -4.58 -4.51 -5.19 -4.81 -4.26 -4.08 -4.05 -4.37 -4.14
12 testosterone -4.09 -4.35 -5.17 -4.62 -4.11 -4.52 -4.17 -4.49 -3.98 -4.13 -4.27
13 lindane -4.64 -4.25 -4.88 -5.80 -3.93 -5.04 -5.34 -4.91 -4.71 -4.91 -3.98
14 parathion -4.66 -4.51 -3.94 -4.59 -2.64 -3.66 -3.98 -3.64 -4.13 -4.31 -4.06
15 diazinon -3.64 -3.93 -5.29 -4.98 -3.06 -2.66 -4.10 -3.56 -4.01 -3.43 -4.18
16 phenolphthalein -2.90 -4.37 -4.48 -4.61 -4.28 -4.62 -4.05 -4.16 -3.99 -4.31 -4.64
17 malathion -3.37 -2.74 -2.94 -3.48 -3.45 -2.79 -3.63 -2.52 -3.24 -3.73 -2.96
18 chlorpyriphos -5.49 -5.70 -5.77 -3.75 -4.33 -4.79 -5.46 -4.50 -5.61 -5.31 -6.41
19 prostaglandin -2.47 -3.63 -4.21 n/aa -4.06 -3.07 -4.35 -3.80 -3.29 -3.52 -3.98
20 p,p′-DDT -8.08 -6.62 -8.00 -7.75 -6.60 -7.86 -7.82 -7.93 -7.67 -7.59 -6.85
21 chlordane -6.86 -7.00 -7.55 -6.51 -6.41 -7.66 -8.35 -7.32 -7.29 -7.23 -6.47

n 21 21(19) 19 21 21 21 21 21 21 21
r 0.94 0.84(0.92)b 0.87 0.75 0.92 0.91 0.89 0.95 0.95 0.91
s 0.64 1.24(0.86)b 1.08 1.20 0.77 0.88 0.91 0.63 0.64 0.79

a Predicted values are not indicated.b Values with and without (in parentheses) outliers.
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Table 3. Observed and Predicted Aqueous Solubilities for Test Set 2 of 120 Compounds

no. name exptl logS calcd logSa calcd logSb

1 carbamic acid, ethyl ester 0.85 -0.12 -0.00
2 benzamide -0.96 -0.93 -1.54
3 glycine 0.52 1.52 0.76
4 L-serine -0.02 1.29 0.89
5 L-glutamine -0.55 0.26 0.41
6 benz a anthracene, 7,12-dimethyl- -7.02 -7.76 -8.17
7 lindane -4.59 -6.04 -4.61
8 L-leucine -0.8 -0.91 -1.02
9 L-methionine -0.42 -0.62 -0.47
10 L-phenylalanine -0.92 -1.00 -1.26
11 L-valine -0.30 -0.46 -0.51
12 endrin -6.29 -6.04 -6.24
13 L-tryptophan -1.28 -1.84 -2.18
14 L-isoleucine -0.59 -0.91 -1.04
15 4-chlorobenzoic acid -3.31 -2.84 -2.08
16 L-arginine 0.00 0.42 0.11
17 codeine -1.52 -2.53 -1.87
18 1,2,3-propanetricarboxylic acid,2-hydroxy- 0.51 1.77 0.91
19 2-propenamide 0.95 -0.24 -0.29
20 2-propenoic acid, 2-methyl- 0.00 -0.17 -0.00
21 2-propenoic acid, 2-methyl-, methyl ester -0.80 -1.17 -0.40
22 1,2-benzisothiazol-3(2H)-one, 1,1-dioxide -1.64 -2.16 -1.60
23 1-naphthalenesulfonic acid, 2-amino- -1.70 -2.02 -2.92
24 9,10-anthracenedione -5.19 -5.87 -4.17
25 1,2-benzenedicarboxylic acid, butyl phenylmethyl ester -5.64 -4.77 -4.49
26 9H-carbazole -5.27 -4.62 -4.04
27 benzenamine, 2-nitro- -1.96 -1.43 -1.94
28 1,2-benzenedicarboxylic acid -2.11 -1.02 -1.22
29 phenol, 2-methoxy- -1.96 -1.43 -0.95
30 1-naphthalenol -2.22 -1.59 -2.85
31 1,2-dicyanobenzene -2.38 -0.97 -1.12
32 benzenamine,N,N-diethyl- -3.03 -1.98 -1.89
33 biphenyl -4.30 -3.24 -3.81
34 1,1′-biphenyl-4-ol -3.48 -2.53 -3.40
35 10H-phenothiazine -5.10 -6.17 -3.45
36 1,1′-biphenyl-4,4′-diamine -2.70 -3.84 -3.56
37 1,2-benzenediamine -0.42 -0.50 -1.04
38 2-propanol, 1,2-dichloro- -0.11 -0.41 -1.02
39 2-propenoic acid, methyl ester -0.22 -0.76 -0.40
40 2-imidazolidinethione -0.71 -0.64 -0.44
41 2-furancarboxaldehyde -0.10 0.00 -0.68
42 benzene, 1,3,5-trinitro- -2.89 -1.77 -3.59
43 1,2,3-propanetriol, triacetate -0.60 0.73 -0.52
44 diazene, diphenyl- -2.75 -2.90 -3.53
45 acetamide, N-phenyl- -1.33 -1.89 -1.49
46 diethylthiourea, N,N′- -1.46 -2.56 -1.05
47 2-propenoic acid, 2-methylpropyl ester -1.21 -1.87 -1.14
48 ethanesulfonic acid, 2-amino- -0.09 1.07 0.90
49 2-pentanone, 4-methyl- -0.74 -1.05 -1.00
50 2-pentene -2.54 -1.86 -1.96
51 butanedioic acid -0.20 0.65 1.12
52 2,4-hexadienoic acid, (E,E)- -1.77 -0.50 -1.50
53 2-propanol, 1,1′-iminobis- 0.81 0.91 0.73
54 endosulfan -6.15 -5.25 -5.62
55 anthranilic acid, o- -1.52 -0.75 -1.47
56 2-naphthalenesulfonic acid, 5-amino- -2.35 -2.53 -2.92
57 dinitrotoluene, 2,4- -2.82 -2.85 -3.14
58 hydrazine, 1,2-diphenyl- -2.92 -1.57 -3.14
59 benzaldehyde, 4-hydroxy- -0.96 0.48 -0.90
60 benzaldehyde, 4-methoxy- -1.49 -0.27 -1.39
61 4-heptanone -1.30 -2.52 -1.49
62 2-butenal 0.32 0.09 -0.46
63 1-butanol, 3-methyl-, acetate -1.92 -1.27 -0.05
64 1-naphthalenamine -1.92 -3.04 -3.14
65 2-naphthalenol -2.28 -2.09 -2.85
66 D-glucopyranoside, 2-(hydroxymethyl)phenyl -0.85 0.26 -0.85
67 2-propenoic acid, 3-phenyl- -2.48 -3.40 -1.87
68 2- propenoic acid, ethyl ester -0.74 -1.24 -0.74
69 4-pyrimidinone, 2,3-dihydro-2-thioxo- -2.26 -1.33 -1.77
70 acetic acid, hexyl ester -2.46 -1.79 -1.98
71 mercaptobenzothiazole, 2- -3.15 -2.03 -3.30
72 benzoic acid, 4-amino- -0.40 -1.52 -0.99
73 acenaphthylene -3.96 -4.27 -4.09
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atom types are very simple, and the whole program is very
short and easy to be interpreted.

To some extent, an additive method is the art of fragment/
atom classification. The definition of atom types should be
suitable, and too few atom types may not represent the
different chemical environments effectively. Certainly, we
do not mean that more atom types can produce better results.
Sometimes, two or several atom types may not be fully
independent, and the addition of redundant atom types cannot
effectively enhance the prediction of the model. The number
of atom types used here is much smaller than Klopman’s
set of 118. However, using fewer atom types does not
weaken the power of our model. We think that after our
iterative adjustment of atom types we have developed each
of them into a more elaborate class for logS calculation.

CONCLUSION

A new atom contribution approach was used to correlate
the aqueous solubility of 1290 organic compounds. The
model was only based on 2D-molecular topology. The
aqueous solubility was calculated from contributions of 76
atom types and 2 corrections factors. The model was able
to predict the aqueous solubility of a diverse set of 1290
organic compounds with an overall correlation coefficient
of 0.96 and a standard deviation of 0.62 log unit between
the calculated and experimental data. The actual prediction
of our model was validated through two external test sets.
Comparison of the calculated results for test set 1 among
several logS models demonstrates that our model can give
similar results with the best model reported. Comparison of

Table 3 (Continued)

no. name exptl logS calcd logSa calcd logSb

74 dibenzo-p-dioxin -5.31 -4.63 -3.75
75 1,1-ethanediol, 2,2,2-trichloro- 0.72 0.63 -1.04
76 DL-alanine 0.26 0.31 0.37
77 decanoic acid -3.44 -3.70 -3.36
78 2-propanol, 1,1,1-trifluoro- 0.30 0.03 -0.83
79 guanidine, cyano- -0.31 1.02 -0.03
80 5-nonanone -2.59 -3.80 -2.56
81 1,2-dinitrobenzene -3.10 -2.55 -2.84
82 2,3-dichloro-2-methyl-butane -2.69 -3.78 -2.23
83 1,2-diiodoethylene -3.22 -2.28 -3.04
84 3-methyl-3-hexanol -1.00 -0.88 -1.09
85 ethane, 1,2-diethoxy- -0.77 0.16 -0.06
86 4-methylpentanol -1.14 -1.16 -1.05
87 1-phenylethanol -0.92 -0.56 -1.08
88 1-hexen-3-one -0.83 -1.73 -1.35
89 1,2,3,6,7,8-hexahydropyrene -5.96 -7.25 -6.14
90 dicamba -1.70 -3.17 -2.94
91 dodine acetate -2.63 -5.34 -5.52
92 biphenyl, 3,4-dichloro- -7.44 -6.30 -5.43
93 asulam -1.66 -1.21 -1.57
94 O-tert-butyl carbamate 0.10 -1.34 -0.57
95 3-methyl-3-heptanol -1.60 -1.38 -1.63
96 2,4′,5-PCB -6.25 -6.30 -6.21
97 2,3-dimethyl-1-butanol -0.39 -0.83 -0.97
98 ditolyl ether -4.85 -3.84 -4.39
99 3-methyl-2-heptanol -1.72 -2.45 -1.99
100 2′,3,4,4′,5′-PCB -7.39 -8.25 -7.73
101 2,3′,4′,5-PCB -7.25 -7.63 -6.98
102 dichlorodibenzo-p-dioxin, 2,7- -7.82 -6.59 -5.34
103 2,3,4,2′,4′,5′-PCB -8.32 -8.62 -8.46
104 2,2′,3,3′,4,4′,5,5′-PCB -9.16 -9.33 -9.88
105 2,3,4,2′,5′-PCB -7.91 -8.07 -7.73
106 2,3,3′,4,4′,5-PCB -7.82 -8.76 -8.46
107 2,3,4′-PCB -6.26 -6.35 -6.21
108 2-chlorodibenzo-p-dioxin -5.82 -5.66 -4.55
109 2,2′,3,3′,4,4′,5,5′,6-nonachlorobiphenyl -10.26 -9.65 -10.56
110 2,2′,3,5′-PCB -6.47 -6.92 -6.98
111 2,2′,3,5,5′,6-hexachlorobiphenyl -7.42 -8.45 -8.46
112 2,2′,3,4,4′,5′,6- heptachlorobiphenyl -7.92 -8.93 -9.18
113 2,2′,3,3′,4,5,5′,6,6′-PCB -10.41 -9.65 -10.56
114 2,2′,3,4,5,5′,- hexachlorobiphenyl -7.68 -7.45 -8.46
115 2,2′,3,4,5,5′,6- heptachlorobiphenyl -8.94 -8.93 -9.18
116 2,2′,3,4,6-PCB -7.43 -7.87 -7.73
117 2,3,4,5,2′,3′-PCB -8.78 -8.45 -8.46
118 2,3,6-PCB -6.29 -6.86 -6.21
119 2,2′,4,6,6′-PCB -7.32 -8.55 -7.73
120 2,3,3′,4,4′,6- hexachlorobiphenyl -7.66 -8.61 -8.46
r 0.96 0.96
s 0.84 0.79
MUEc 0.70 0.57

a Predicted values using the Klopman’s group contribution.b Predicted values using the drug-LOGS model.c MUE represents mean unsigned
error.
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the calculated results of test set 2 between the Klopman’s
model and drug-LOGS demonstrates that the drug-LOGS
model is more predictive than the Klopman’s model.
Moreover, because our model uses an atom as the basic unit,
it does not contain a missing fragment problem and can be
used as a universal and effective approach for the prediction
of solubility for any organic molecule.
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Figure 3. The predicted versus observed aqueous solubilities for
test set 2.
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