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The correlations between Caco-2 permeability (logPapp) and molecular properties have been investigated. A
training set of 77 structurally diverse organic molecules was used to construct significant QSAR models for
Caco-2 cell permeation. Cellular permeation was found to depend primarily upon experimental distribution
coefficient (logD) at pH ) 7.4, high charged polar surface area (HCPSA), and radius of gyration (rgyr).
Among these three descriptors, logD may have the largest impact on diffusion through Caco-2 cell because
logD shows obvious linear correlation with logPapp (r)0.703) when logD is smaller than 2.0. High polar
surface area will be unfavorable to achieve good Caco-2 permeability because higher polar surface area
will introduce stronger H-bonding interactions between Caco-2 cells and drugs. The comparison among
HCPSA, PSA (polar surface area), and TPSA (topological polar surface area) implies that high-charged
atoms may be more important to the interactions between Caco-2 cell and drugs. Besides logD and HCPSA,
rgyr is also closely connected with Caco-2 permeabilities. The molecules with larger rgyr are more difficult
to cross Caco-2 monolayers than those with smaller rgyr. The descriptors included in the prediction models
permit the interpretation in structural terms of the passive permeability process, evidencing the main role of
lipholiphicity, H-bonding, and bulk properties. Besides these three molecular descriptors, the influence of
other molecular descriptors was also investigated. From the calculated results, it can be found that introducing
descriptors concerned with molecular flexibility can improve the linear correlation. The resulting model
with four descriptors bears good statistical significance,n ) 77, r ) 0.82,q ) 0.79,s ) 0.45,F ) 35.7.
The actual predictive abilities of the QSAR model were validated through an external validation test set of
23 diverse compounds. The predictions for the tested compounds are as the same accuracy as the compounds
of the training set and significantly better than those predicted by using the model reported. The good
predictive ability suggests that the proposed model may be a good tool for fast screening of logPapp for
compound libraries or large sets of new chemical entities via combinatorial chemistry synthesis.

INTRODUCTION

For the development of bioactive molecules as therapeutic
agents, oral bioavailability is often an important consider-
ation. Therefore besides sufficient activity, an important goal
for drug research is to gain sufficient understanding of the
molecular properties that limit oral bioavailability to facilitate
the design of new drug candidates. Now, the development
of modern technologies, such as combinatorial chemistry and
high throughput screening, into drug discovery has resulted
in a vast increase in the number of lead compounds
synthesized in pharmaceutical drug discovery setting. But
in most cases such lead compounds demonstrate unfavorable
biopharmaceutical properties, such as low oral bioavailability.
It is believed that over 50% of the candidates failed due to
ADME/Tox deficiencies during development.1,2 To avoid this
failure at the development stage, a set of in vitro ADME
screens has been implemented in many pharmaceutical
companies with the aim of discarding compounds in early
stage of drug discovery process. Even though the early stage
in vitro ADME reduces the probability of the failure at the
development stage, it is still time-consuming and resource-
intensive. For this reason it is necessary to develop in silico
methods for predicting drug-likeness.

Many factors will influence oral bioavailability. Among
them, human intestinal absorption may be one of the most
important factors. Many in vitro cell culture models have
been investigated as potential tools for drug absorption.3,4

The most widely used in vitro model is Caco-2 cell line.3

Caco-2 cells, a well-differentiated intestinal cell line derived
from human colorectal carcinoma, display many of the
morphological and functional properties of the in vivo
intestinal epithelial cell barrier. Extensive studies have shown
that human oral drug absorption and permeability coefficient
have good correlations, suggesting that the human absorption
can be well predicted by this in vitro model.5 Caco-2 culture
models have many advantages. First, it measures the transport
of the drug across a cell membrane, rather than an interaction
of the drug with the lipid bilayer. Second, it can measure
the parallel transport routes, both passive and active. How-
ever, it possesses several limitations including long prepara-
tion time, very slow absorption times compared to the human
intestine, and large interlaboratory differences in quantitative
results. In light of the limitations in throughput with these
systems, the development of higher throughput computational
tools for the reliable prediction of Caco-2 permeability is
demanding.6,7

For a drug molecule across the intestinal epithelium, there
are two important routes for permeation, including passive
diffusion and carrier-mediated influx via active transport* Corresponding author e-mail: xiaojxu@chem.pku.edu.cn.
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mechanisms.6 It is assumed that with only a few exceptions,
these orally administered drugs were transported across the
intestinal epithelium predominantly by a passive transcellular
process. For passive diffusion, two types exist for permeation,
the paracellular and the transcellular routes. Many factors
will affect the passive intestinal permeability of a molecule
including lipophilicity, hydrogen bonding capacity, solute
size, and et al.8,9 Many physicochemical descriptors have
been introduced to construct the Caco-2 permeability predic-
tion models, including polar surface area,10 hydrogen-bonding
and size descriptors,11 MolSurf-derived descriptors,12 Volsurf-
derived descriptors,13 MO-calculation,14 membrane-interac-
tion analysis,15 and quadratic indices.16 Most of the earlier
models using multiple linear regression (MLR) or partial
least-squares (PLS) were based on a relatively small set of
molecules and not fully validated by external prediction sets.
For example, in Palm’s work, the training set only includes
six molecules. Some QSPR models have relative good
statistical significances, but their actual predictive abilities
may be questionable. The reliable models can only be
produced based on enough samples.

In this study, we have investigated a number of different
molecular descriptors and studied their relationships to
Caco-2 permeation systematically. Our ultimate goal is to
find a set of simple descriptors to estimate Caco-2 perme-
ability as high throughput fashion. Moreover, to develop
relatively universal predictive models, we used a large set
of Caco-2 permeability data from a variety of sources. The
whole data set includes 100 drugs or drug-like molecules.
As far as we know, the data set used in this paper is much
larger than those used in earlier works.

METHODS

Data Set.The apparent Caco-2 permeability coefficients
for 110 structurally diverse compounds were taken from 13
references .17-29 The structurally heterogeneous used covers
a relatively wide range of molecular size and lipophilicity.
All compounds were regarded as being transported by passive
diffusion. The data set was split into a training set of 77
compounds (Table 1) and a test set of 23 compounds (Table
2). The structures of the compounds were built within the
SYBYL 6.9 molecular simulation package and modeled in
their neutral forms.30 Geometry optimization was performed
by using molecular mechanism with MMFF force field,31

and the terminal condition was the RMS of potential energy
smaller than 0.001 kcal‚Å-1‚mol-1. For these flexible
compounds, the conformational analyses were performed to
determine the most stable conformers. The models were then
saved in two MACCS sdf databases named training.sdf and
test.sdf for further analysis. The MACCS sdf database files
are available in the Supporting Information.

The Caco-2 permeability coefficients for all compounds
are shown in Table 4. From Table 4, it can be found that
even for the same compound, the experimental logPappvalues
from different sources exist obvious variation. This is not
strange. Artursson et al. showed that there exist large
variances in Caco-2 cell results due to factors such as cell
passage number, culture time, type of support, and medium.32

Egan et al. conducted a small survey of published Caco-2
cell permeability data and found that average percent relative
standard deviation (%RSD) was in the range of 5.6-28.3%.33

So large cautions must be taken to ensure that a meaningful

comparison can be made because the variability in Caco-2
assay results among different laboratories is so large. To
decrease the deviation produced by different assays, the
Caco-2 values averaged from different experimental sources
were used in the current work. Here, it should be noted that
simply adopting the average value is not very suitable. For
example, for 12 compounds obtained from the Hovgaard’s
work,21 the experimental logPeff values for acebutolol,
alprenolol, propranolol, and timolol can also be found in
other references. So for compounds obtained from ref 21, if
some compounds adopt the average values and the other
compounds adopt the single values, the parallelism within
the same experimental assay will be destroyed. Here, we
treated the experimental values from ref 25 as the benchmark,
because most of the logPapp values used in this paper are
obtained from ref 25. Besides acebutolol, the difference
between the logPapp value of alprenolol, propranolol, or
timolol provided by ref 21 and that provided by ref 25 is
about 0.50. So all experimental values obtained from ref 21
were adjusted by adding a constant of-0.5. Similarly, all
logPapp values for molecules obtained from ref 19 were
adjusted by adding a constant of-0.7. In the training set,
compound PNU200603 was selected from the Nicolaas’s
work.26 In the Nicolaas’s work, six factor Xa inhibitors were
investigated. Besides PNU200603, the other five inhibitors
show obvious asymmetrical transport, implying active trans-
port or metabolic process may be involved in the absorption
process. So we only selected PNU200603 into the training
set. Considering the difference between the average logPapp

value of mannitol in Table 4 and logPapp determined by
Nicolaas et al., logPapp of PNU200603 was adjusted by
adding a constant of 0.6. We believed that the adjustment
using here was reasonable because the different systematic
errors from different assays were not enlarged. The logPeff

values for most compounds in the test set are obtained from
the work of Camenisch et al.29 In Camenisch’s work, the
Caco-2 experiments were designed based on the work of
Artursson’s group, since the authors want to combine their
data with previously measured compounds in order to have
a larger data set.18 Preliminary Caco-2 cell permeation studies
were performed using atenolol, practolol, warfarin, testoster-
one, and mannitol. With the exception of mannitol, it was
demonstrated that the Camenish’s permeability data are
well correlated with and quantitatively nearly identical to
data in the literature.17 From the logPeff data in Table 4, we
can find that the experimental values from refs 17 and 24
show high consistency, so we can say that the experimental
logPeff values in the training set and the test set are
comparative.

Descriptors Used in Multiple Linear Regression. (1)
Hydrophobicity Descriptor. The experimental logD values
at pH 7.4 for all compounds were obtained from the
literature.19-21,25-29,34,35It should be noted that the logD values
for the same compound might exist with some differences
in a different reference. For example, the logD values for
atenolol from refs 25 and 29 are-1.29 and -2.14,
respectively. In most cases, the average logD value was used.
Sometimes, the logD value for one compound could be found
in three references. In these cases, if these three values do
not exist with a large difference, the average value was used.
But if one value exists with large differences compared with
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Table 1. 2D Structures of Compounds in the Training Set
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the other two values, this value was treated as outlier and
rejected. All experimental logD values are presented in
Tables 4 and 5.

As a comparison, the predicted logP values were also
calculated. The logP values for all compounds were calcu-
lated using the SLOGP method developed in our group.36

SLOGP estimates the logP values by summing the contribu-
tion of atom-weighted solvent accessible surface areas
(SASA) and correction factors. Comparison of various proce-
dures of logP calculation for the external test set demonstrates
that our method bears very good accuracy and is comparable
or even better than the fragment-based approaches.

(2) Hydrophilicity Descriptor. Due to the physical nature
of the lipid bilayer, organic molecules, which can form
favorable hydrogen-bonding or electrostatic interactions with
lipid bilayer, may exist with great difficulties in Caco-2
penetration. To cross a membrane, a drug molecule needs
to break hydrogen bonds with its aqueous environment. The
more potential hydrogen bonds a molecule can make, the
more energy this bond breaking costs, and so high hydrogen-
bonding potential is an unfavorable property that is often
related to low permeability and absorption. A variety of
computational approaches have addressed the problem of
estimating hydrogen-bonding capacity, ranging from simple
heteroatom (O and N) counts, the consideration of molecules
in terms of the number of hydrogen-bond acceptors and
donors, and more sophisticated measures that take into
account such parameters as free-energy factors and (dynamic)
polar surface area (PSA). Indeed it has been proven that polar
surface area (PSA) is a very significant descriptor for drug
transport properties such as human intestinal permeation and
blood-brain barrier penetration.6,7 Here, the polar atoms
include all oxygen atoms, nitrogen atoms, sulfur atoms, and
hydrogen atoms connected with them. By definition,PSA
evaluation requires 3D molecular conformation and atomic
surface area. Here, molecular solvent accessible surface areas
were calculated using the MSMS program and the probe
radius was set to 0.5 Å.37

Generally, as a polar atom, it should be highly electroneg-
ative and possess high density of charge. If the charge den-
sity on an oxygen atom or a nitrogen atom is very low, it
may not produce strong hydrogen bond or electrostatic in-
teractions with other polar atoms. In our previous work, we
proposed a new concept of high-charged polar surface area
(HCPSA).38 According to our definition, only polar atoms
with high charge densities belong to high-charged polar

atoms. Here, the Gasteiger-Marsili method was used to
calculate the partial charges,39 and the PSA surrounding those
polar atoms with absolute partial charges larger than 0.1|e|
was treated as the high-charged polar surface area (HCPSA).

As a comparison, the topological polar surface area
(TPSA) was calculated. The concept of TPSA was originally
proposed by Ertl et al.40 The procedure calculates TPSA from
2-D molecular bonding information only, so it allows PSA
calculations to be implemented in virtual screening ap-
proaches. Here, the SMARTS definition and the contributions
for different atom types were obtained from the Ertl’s work.

The number of hydrogen-bond donors (nHBD) and acceptors
(nHBA) were obtained using the Patty rules,41 which were
interpreted by OELIB.42 We defined a parameter file to store
features of atoms that can form hydrogen bonds. These atoms
were divided into three categories hydrogen-bond donor
(HBD), hydrogen-bond acceptor (HBA), and polar atom
(POL) that has a lone electron pair and a polar hydrogen
atom and can be treated as a hydrogen-bond donor or
hydrogen-bond acceptor.

(3) Molecular Bulkiness Descriptors.Molecular size is
a very important factor influencing the diffusion in biological
membrane and continuous fluid media.43 For diffusion in
water this dependence is relatively small, while for trans-
cellular diffusion in biological membranes, a rather strong
dependence on molecular size could be observed. The para-
cellular diffusion through the tight junctions of the biological
membrane is, because of the restricted size of these aqueous
pores, also dependent upon molecular size.44 The simplest
descriptor concerned with molecular size is molecular weight
(MW). However, molecular weight may be so simple to de-
scribe the shape of a molecule. For example, there are two
molecules with similar molecular weights; if one molecule
is thin and the other one is global, the Caco-2 permeability
of the thin molecule may be easier than the global one.

Compared with MW, two descriptors of molecular volume
and molecular surface area should be more suitable to
describe the shape of a molecule. Here, molecular volume
(V) and molecular solvent-accessible surface area (SASA)
were estimated using the MSMS program.37 Moreover, radius
of gyration (rgyr) was calculated using the following equation

Table 1 (Continued)

rgyr ) x 1

MT

∑
i ) 1

n

miri
2 (1)
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Table 2. 2D Structures of Compounds in the Test Set
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Table 3. Experimental logPeff Values for Molecules in the Data Seta

no. A B C D E F G H I J K L M logPeff

1 -5.35 -6.29 -5.83
2 -4.11 -4.61
3 -5.62 -4.51 -5.04 -5.06
4 -5.70 -6.60 -6.15
5 -4.39 -4.39 -4.12 -4.60 -4.62
6 -3.97 -4.47
7 -4.44 -4.44
8 -4.52 -4.52
9 -5.40 -5.40
10 -6.70 -6.69 -6.3 -6.28 -6.50
11 -4.31 -4.81
12 -4.02 -4.52
13 -5.10 -5.10
14 -4.30 -4.51 -4.41
15 -4.69 -4.69
16 -6.72 -6.72
17 -4.70 -4.70
18 -6.30 -5.51 -5.86 -5.89
19 -4.52 -4.66 -4.59
20 -4.26 -4.67 -4.47
21 -4.67 -4.61 -4.64
22 -4.90 -4.57 -4.63 -4.91 -4.75
23 -6.36 -6.36
24 -5.94 -5.94
25 -4.15 -4.48 -4.32
26 -5.03 -5.03
27 -6.80 -6.80
28 -5.43 -5.43
29 -4.77 -4.77
30 -4.64 -4.64
31 -5.57 -6.42 -5.99
32 -4.44 -4.44
33 -5.82 -6.29 -6.06
34 -4.67 -4.45 -4.85 -4.66
35 -4.28 -4.28
36 -4.85 -4.85
37 -4.69 -4.69
38 -5.03 -5.03
39 -6.75 -5.49 -6.19 -6.42 -6.21
40 -4.71 -4.71
41 -3.88 -3.88
42 -5.92 -5.92
43 -6.16 -6.16
44 -4.57 -4.57 -4.63 -4.59
45 -5.41 -5.41
46 -4.13 -4.13
47 -4.52 -4.52
48 -4.71 -4.71
49 -6.96 -6.96
50 -4.18 -4.68
51 -4.01 -4.51
52 -4.61 -4.61
53 -4.57 -4.57
54 -4.78 -4.78
55 -6.36 -6.36
56 -4.45 -4.45
57 -6.05 -6.05 -6.05
58 -4.36 -4.36
59 -4.10 -4.63 -4.37
60 -4.38 -4.38 -4.08 -4.56 -4.66 -4.58
61 -3.98 -4.48
62 -4.69 -4.69
63 -6.31 -6.31
64 -4.92 -4.66 -4.79
65 -4.93 -4.93
66 -5.77 -5.77
67 -6.89 -6.52 -6.71
68 -4.82 -4.82
69 -6.42 -6.33 -6.38
70 -4.29 -4.14 -4.60 -4.34
71 -4.35 -4.89 -4.85
72 -4.10 -4.60
73 -5.37 -5.37
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wheremi is the mass of theith atom,ri are the center-of-
mass coordinates in the system, andMT is the total nuclear
mass.

It should be noted that some descriptors including V,
SASA, and rgyr are conformation-dependent. For all mol-
ecules the energy-lowest structures were considered. In
preliminary calculations using a set of low-energy conforma-
tions from molecular dynamics it was found that the standard
deviations of these three descriptors were usually in the order
of 5%. We do not consider this as critical for the present
analyses. Furthermore, for conformationally flexible com-
pounds the actual conformation penetrating a membrane is
difficult to estimate. The ensemble-averaged property of a
molecule does not equal to that of the actual conformation
in a membrane.

(4) Other Molecular Descriptors. To investigate the
potential influence of other molecular descriptors to Caco-2
permeabilities, we introduced many other descriptors to linear
correlation. These descriptors include six constitutional and
geometrical descriptors, three topological descriptors, two
physicochemical descriptors, and one solvation descriptor.
The symbol and descriptions of these descriptors are listed
in Table 4. The solvation descriptor was calculated using
the SAWSA model developed in our group,45 and the other
descriptors were calculated using a revised drug-BB program
developed in our group.38

Statistics of the Models.The statistics of a model was
mainly tested by its linear correlation coefficient (r) and
leave-one-out cross-validation correlation coefficient (q).
Cross-validatedq2 is defined asq2 ) (SSY-PRESS)/SSY,
where SSY is the sum of squared deviations of the dependent
variable values from their mean, and PRESS is the prediction
error sum of squares obtained from the leave-one-out cross-
validation procedure. Moreover, the standard deviation value
(s) and the Fisher value (F) were reported for each model.

RESULTS AND DISCUSSION

Descriptors in QSPR Models. (1) Polar Surface Area.
In 1992, Van de Waterbeemd et al. correlated the PSAs of
a series of CNS drugs to membrane transport first.46

Thenceforward, PSA has become a very popular parameter
for the prediction of molecular transport properties, particu-
larly intestinal absorption and blood-brain barrier penetration.
Here, we first carried out a simple linear regression of the
77 training set compounds using polar surface area (PSA)
or topological polar surface area (TPSA) as the only
descriptor. The resulting equations (eqs 2 and 3) and statistics
are listed in Table 6.

Compared with TPSA, PSA can obtain better correlation
with Caco-2 permeabilities. Palm et al. ever performed a
correlation between dynamic polar vdW surface areas and

Table 3 (Continued)

no. A B C D E F G H I J K L M logPeff

74 -5.34 -5.34
75 -4.42 -4.68 -4.55
76 -5.16 -5.16
77 -6.85 -6.85

A1 -6.10 -6.10
A2 -4.55 -4.55
A3 -6.05 -6.05
A4 -4.53 -4.30 -4.31 -4.38
A5 -5.64 -5.64
A6 -6.92 -6.09 -6.51
A7 -4.86 -4.14 -4.50
A8 -4.11 -4.11
A9 -4.35 -4.35
A10 -6.02 -6.02
A11 -4.71 -4.71
A12 -4.21 -4.21
A13 -4.90 -4.90
A14 -6.16 -6.16
A15 -4.77 -4.77
A16 -4.81 -4.81
A17 -4.58 -4.58
A18 -5.98 -5.98
A19 -6.20 -6.20
A20 -6.88 -6.88
A21 -6.13 -6.13
A22 -6.26 -6.26
A23 -4.87 -4.87

a References: A (Artusson 1990), B (Artursson 1991), C (Haeberlin 1993), D (Rubas 1993), E (Hovgaard 1995), F (Augustijins 1996), G (collett
1996), H (Yee 1997), I (Yazdanian 1998), J (Nicolaas 2001), K (Zhu 2002), L (Saha 2002), M (Camenisch 1998).

Table 4. Symbols and Descriptions of Other Molecular Descriptors Used in Correlation

symbol descriptor symbol description

Natom number of all atoms Nbond number of all bonds
Naromatic number of aromatic atoms Nhydro number of hydrophobic atoms
frotb fraction of rotatable bonds density mass density
dipole dipole moment Hf heat of formation
W Weiner index Z Hosoya index
Zagreb Zagreb index Esolv solvation free energy using the SAWSA model
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Table 5. Molecules Descriptors and Predicted Values of logPeff for Compounds in the Training Set

name logPeff (exp) logD rgyr rgyrd HCPSA TPSA Nrotb logPeff (calc) residue

acebutolol -5.83 -0.09 4.64 4.51 82.88 87.66 0.31 -5.30 -0.53
acebutolol ester -4.61 1.59 5.12 5.03 77.08 93.73 0.29 -4.89 0.28
acetylsalic acid -5.06 -2.25 3.41 3.24 79.38 89.9 0.23 -5.77 0.71
acyclovir -6.15 -1.80 3.37 3.23 120.63 114.76 0.21 -5.91 -0.24
alprenolol -4.62 1.38 3.68 3.69 38.92 41.49 0.29 -4.58 -0.04
alprenolol ester -4.47 2.78 3.84 3.88 35.53 47.56 0.27 -4.39 -0.08
aminopyrin -4.44 0.63 2.97 2.97 20.81 26.79 0.17 -4.63 0.19
artemisinin -4.52 2.22 2.75 2.75 54.27 53.99 0.07 -4.47 -0.05
artesunate -5.40 -0.88 4.02 3.62 102.05 100.52 0.16 -5.64 0.24
atenolol -6.44 -1.81 4.58 4.52 86.82 84.58 0.29 -5.85 -0.59
betazolol ester -4.81 0.28 5.41 5.27 43.02 50.72 0.27 -5.20 0.39
betazolol_ -4.52 0.63 5.64 5.39 47.14 56.79 0.26 -5.13 0.61
bremazocine -5.10 1.66 3.43 3.38 49.56 43.7 0.15 -4.57 -0.53
caffeine -4.41 0.02 2.47 2.47 45.55 58.44 0.12 -4.89 0.48
chloramphenicol -4.69 1.14 3.75 3.73 113.73 115.38 0.28 -5.11 0.42
chlorothiazide -6.72 -1.15 3.11 3.11 138.76 118.69 0.08 -5.87 -0.85
chlorpromazine -4.70 1.86 3.74 3.69 4.60 6.48 0.14 -4.38 -0.32
cimetidine -5.89 -0.36 4.26 4.24 105.44 88.89 0.33 -5.55 -0.34
clonidine -4.59 0.78 2.79 2.79 30.03 36.42 0.08 -4.69 0.10
corticosterone -4.47 1.78 3.68 3.71 75.95 74.6 0.10 -4.78 0.31
desipramine -4.67 1.57 3.4 3.42 13.8 15.27 0.11 -4.46 -0.21
dexamethas -4.75 1.89 3.6 3.66 90.74 94.83 0.13 -4.77 0.02
dexamethas-â-D-glucoside -6.54 0.58 5.67 5.28 163.95 173.98 0.17 -5.83 -0.71
dexamethas-â-D-glucuronide -6.12 -1.59 5.75 5.23 186.88 191.05 0.17 -6.55 0.43
diazepam -4.32 2.58 3.28 3.28 25.93 32.67 0.06 -4.45 0.13
dopamine -5.03 -0.80 2.67 2.68 75.13 66.48 0.23 -5.27 0.24
doxorubici -6.80 -0.16 4.85 4.9 186.78 206.07 0.18 -6.00 -0.80
erythromycin -5.43 1.26 4.99 5.01 138.69 193.91 0.21 -5.13 -0.30
estradiol -4.77 2.24 3.44 3.44 44.34 40.46 0.06 -4.57 -0.20
felodipine -4.64 3.48 3.39 3.48 50.34 64.63 0.22 -4.44 -0.20
ganciclovir -6.27 -0.87 3.7 3.48 139.45 134.99 0.25 -5.79 -0.48
griseofulvin -4.44 2.47 3.37 3.37 67.55 71.06 0.16 -4.59 0.15
hydrochlorothiazide -6.06 -0.12 3.11 3.11 142.85 118.36 0.08 -5.62 -0.44
hydrocortisone -4.66 1.48 3.72 3.79 93.37 94.83 0.12 -4.94 0.28
ibuprophen -4.28 0.68 3.45 3.36 39.86 37.3 0.24 -4.78 0.50
imipramine -4.85 2.52 3.44 3.45 3.56 6.48 0.13 -4.28 -0.57
indomethacin -4.69 1.00 4.16 3.16 67.13 68.53 0.19 -5.00 0.31
labetalol -5.03 1.24 4.61 4.46 93.29 95.58 0.24 -5.09 0.06
mannitol -6.21 -2.65 2.48 2.59 127.46 121.38 0.44 -5.87 -0.34
meloxicam -4.71 0.03 3.34 3.36 93.21 99.6 0.16 -5.27 0.56
methanol -4.58 -0.70 0.84 0.84 25.64 20.23 0.20 -4.67 0.09
methotrexate -5.92 -2.53 5.33 5.18 204.96 210.54 0.26 -6.79 0.87
methylscopolamine -6.16 -1.14 3.67 3.74 51.29 59.06 0.16 -5.37 -0.79
metoprolol -4.59 0.51 4.59 4.53 44.88 50.72 0.30 -4.99 0.4
nadolol -5.41 0.68 4.37 4.1 86.73 81.95 0.24 -5.15 -0.26
naproxen -4.83 0.42 3.38 3.43 76.98 46.53 0.19 -5.09 0.26
nevirapine -4.52 1.81 2.94 2.94 36.68 58.12 0.05 -4.49 -0.03
nicotine -4.71 0.41 2.5 2.5 15.1 16.13 0.07 -4.65 -0.06
olsalazine -6.96 -4.50 4.62 4.37 144.08 139.78 0.27 -6.97 0.01
oxprenolol -4.68 0.45 3.63 3.56 48.62 50.72 0.31 -4.84 0.16
oxprenolol ester -4.51 1.98 3.87 3.9 49.58 56.79 0.29 -4.45 -0.06
phencyclidine -4.61 1.31 2.91 2.91 1.49 3.24 0.04 -4.42 -0.19
phenytoin -4.57 2.26 2.97 2.97 65.63 58.2 0.06 -4.60 0.03
pindolol -4.78 0.19 3.71 3.71 52.80 57.28 0.23 -5.02 0.24
pirenzepine -6.36 -0.46 3.55 3.40 59.71 68.78 0.08 -5.30 -1.06
piroxicam -4.45 -0.07 3.17 3.26 99.19 99.6 0.13 -5.31 0.86
pnu200603 -6.25 -4.00 3.89 3.79 69.89 91.44 0.15 -6.37 0.12
practolol -6.05 -1.40 4.02 4.09 64.79 70.59 0.29 -5.50 -0.55
prazocin -4.36 1.88 4.96 4.99 86.76 106.95 0.15 -5.05 0.69
progesterone -4.37 3.48 3.58 3.62 38.10 34.14 0.07 -4.54 0.17
propranolol -4.58 1.55 3.63 3.53 40.42 41.49 0.22 -4.57 -0.01
propranolo ester -4.48 3.02 4.13 4.06 36.21 47.56 0.22 -4.50 0.02
quinidine -4.69 2.04 3.25 3.30 43.77 45.59 0.14 -4.46 -0.23
ranitidine -6.31 -0.12 5.13 4.57 105.15 86.26 0.33 -5.60 -0.71
salicylic acid -4.79 -1.44 2.14 2.14 61.71 57.53 0.19 -5.29 0.50
scopolamine -4.93 0.21 3.63 3.49 57.35 62.30 0.15 -5.07 0.14
sucrose -5.77 -3.34 3.49 3.54 187.69 189.53 0.28 -6.56 0.79
sulfasalazine -6.33 -0.42 5.68 5.53 133.67 141.31 0.20 -6.06 -0.27
telmisartan -4.82 2.41 5.29 5.01 55.48 72.94 0.15 -4.85 0.03
terbutaline -6.38 -1.07 3.15 3.15 79.52 72.72 0.29 -5.36 -1.02
tesosterone -4.34 3.11 3.33 3.33 42.35 37.3 0.06 -4.53 0.19
timolol -4.85 0.03 4.02 4.01 100.74 79.74 0.24 -5.35 0.50
timolol ester -4.60 1.74 3.98 4.13 96.25 85.81 0.23 -4.82 0.22
uracil -5.37 -1.11 1.84 1.84 66.72 58.20 0.00 -5.23 -0.14
urea -5.34 -1.64 1.23 1.23 82.72 69.11 0.29 -5.29 -0.05
warfarine -4.68 0.64 3.45 3.50 59.47 63.60 0.15 -4.95 0.27
zidovudine -5.16 -0.58 3.14 3.13 96.33 103.59 0.18 -5.43 0.27
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Caco-2 permeability coefficient and found that they were
well linearly correlated. Compared with the model developed
by Palm et al., eq 2 seems very poor. But it should be noted
that in Palm’s work, only sixâ-adrenoreceptor antagonists
were used in correlation.10 If we only used these several
molecules, high linear correlation could also be obtained (see
Figure 1). These six antagonists bear similar basic structures,
so the change of Caco-2 permeabilities may be simply
explained by one molecular descriptor. It is obvious that the
model based on PSA cannot be treated as a universal
principle to predict Caco-2 permeabilities.

In our previous work of blood-brain partitioning predic-
tion,38 we proposed the concept of high-charged polar surface
area (HCPSA). Using HCPSA, we constructed eq 4 (Table
6). Compared with eq 2, eq 4 shows a better correlation,
implying that only high-charged polar surface areas impact
the Caco-2 permeation. Figure 2 shows the linear correlation
between Caco-2 permeabilities and HCPSA.

Here, we used two descriptors includingnHBA and nHBD

in MLR, and the resulting equations (eqs 5 and 6) are listed
in Table 6. It is interesting to find that the number of
hydrogen donor shows a high correlation with Caco-2

Table 6. Multivariate Prediction Models for Caco-2 Permeabilities

log Peff ) -4.28- 0.011PSA (2)
(n)77, r)0.664,q)0.647,s)0.566,F)60.0)
log Peff ) -4.36- 0.010TPSA (3)
(n)77, r)0.636,q)0.612,s)0.583,F)50.9)
log Peff ) -4.27- 0.011HCPSA (4)
(n)77, r)0.678,q)0.661,s)0.558,F)63.9)
log Peff ) -4.49- 0.279nHBD (5)
(n)77, r)0.670,q)0.647,s)0.562,F)60.9)
log Peff ) -4.45- 0.152nHBA (6)
(n)77, r)0.523,q)0.484,s)0.644,F)28.3)
log Peff ) -5.469+ 0.236logP (7)
(n)77, r)0.471,q)0.437,s)0.657,F)24.0)
log Peff ) -5.265+ 0.310logD (8)
(n)77, r)0.706,q)0.691,s)0.536,F)74.6)
log Peff ) -5.303+ 0.406< -1.8< log D < 2.0> (9)
(n)77, r)0.714,q)0.698,s)0.531,F)78.0)
log Peff ) -5.102+ 0.166logDcalc (10)
(n)44, r)0.462,q)0.349,s)0.723,F)11.4)
log Peff ) -4.719+ 0.281< -1.8< log D < 2.0> -0.00699HCPSA (11)
(n)77, r)0.798,q)0.774,s)0.460,F)64.9)
log Peff ) -4.513+ 0.359< -1.8< log D < 2.0> -0.00413HCPSA- 0.00149MW (12)
(n)77, r)0.811,q)0.781,s)0.450, F)46.8)
log Peff ) -4.300+ 0.325< -1.8< log D < 2.0> -0.00495HCPSA- 0.160rgyr (13)
(n)77, r)0.817,q)0.789,s)0.443,F)49.0)
log Peff ) -4.386+ 0.343< -1.8< log D < 2.0> -0.00530HCPSA- 0.00131SASA (14)
(n)77, r)0.813,q)0.782,s)0.447,F)47.6)
log Peff ) -4.475+ 0.357< -1.8< log D < 1.8> -0.00507HCPSA- 0.00174V (15)
(n)77, r)0.813,q)0.781,s)0.448,F)47.4)
log Peff ) -4.277+ 0.330< -1.8< log D < 2.0> -0.00494HCPSA- 0.170rgyrd (16)
(n)77, r)0.817,q)0.789,s)0.444,F)48.7)
log Peff ) -4.392+ 0.252< -1.8< log D < 2.0> -0.00484HCPSA- 0.193rgyr + 1.060frotb (17)
(n)77, r)0.824,q)0.790,s)0.439,F)38.1)
log Peff ) -4.358+ 0.317< -1.8< log D < 2.0> -0.00558HCPSA- 0.179rgyr + 1.074frotb (18)
(n)74, r)0.845,q)0.812,s)0.405,F)43.1)

Figure 1. Correlation between logPeff and PSA for sixâ-adreno-
receptor antagonists.

Figure 2. Correlation between logPeff and HCPSA of 77 com-
pounds in the training set.
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permeability. The correlation betweennHBD and Caco-2
permeabilities is a little worse than that between HCPSA
and Caco-2 permeabilities. But compared with PSA, TPSA,
and HCPSA, the descriptor ofnHBA shows poorer correla-
tions. In fact, the descriptor HCPSA shows significant
correlation withnHBD. The correlation between HCPSA and
nHBD is 0.84, indicating that the descriptor of hydrogen bonds
may be partly replaced by the descriptor HCPSA.

logD. Drug lipophilicty is widely used as a predictor of
membrane permeability since it is assumed that drug
partitioning into the (lipophilic) cell membranes is a rate-
determining process for passive membrane permeation.6 The
standard for expressing lipophilicity is the partition coef-
ficient P (or log P to have a more convenient scale) in an
octanol/water system. Here, a direct fitting of logP values
with logBB values of the compounds in the training set
produced anr of approximately 0.47 (eq 7 in Table 6).

From regression coefficient, the correlation between logPeff

and logP is not very high. In fact, logP values can only be
a first estimate of the lipophilicity of a compound in a
biological environment. For many organic molecules, they
will exist in a different ionizable state in different pH. To
consider the influence of ionization to lipophilicity, the
distribution coefficient (logD) instead of logP was used in
fitting (eq 8). The plot of measured Caco-2 permeability data
versus experimental logD values is shown in Figure 3. The
distribution coefficients refer to the same pH as the perme-
ability data, and therefore some of the compounds are
charged under these conditions.

Compared with eq 7, the correlation coefficient and the
Fisher value of eq 8 were improved significantly. Obviously,
for partition processes in the body, the distribution coefficient
D for which an aqueous buffer at pH 7.4 (blood pH) is used
in the experimental determination-often provides a more
meaningful description of lipophilicity, especially for ioniz-
able compounds.

Some previous efforts to correlate logD to Caco-2 cell
permeability coefficients yielded mixed results. For example,
Hilgers et al. have reported a sigmoidal relationship,47

whereas Artursson observed a poor linear correlation.3 From

Figure 3, it can be found the relationship between Caco-2
and logD could not be simply described by a linear
regression, while it also cannot be described effectively by
a sigmodal fitting. A sigmoidal curve should possess two
plateau regions at the low and the high values of variable.
From Figure 3, it can be found that only compounds with
high permeabilities form a distinct plateau region. For
example, when the logD values are higher than approxi-
mately 2.0, all the compounds have high cellular permeability
coefficients independent of the distribution coefficient or net
charges of the compounds at pH 7.4. However, for com-
pounds below this threshold value, it seems that more
lipophilic compounds have higher Caco-2 cell permeability
coefficient in general. So, it is obvious that the influence of
logD to Caco-2 permeabilities will fall into a certain range.
To discover the effective range of logD, we applied a two-
parameter spline model for logD. The spline model was
denoted with angled brackets. For example,<b<logD<a>
was equal to logD if logD is smaller thana or larger thanb;
otherwise, it will bea or b when logD is larger thana or
smaller thanb. The regression with splines allows the
incorporation of features that do not have a linear effect over
their entire range. To determine the best value ofa or b, a
systematical search was used to change this value from
-3 to 3 using a step of 0.1. From the calculated results, we
could find that the correlation is very sensitive to the variation
of b but not a. The best equation is presented as eq 9 in
Table 6.

Compared with eq 8, the statistical significance of eq 9 is
improved obviously. The threshold values of-1.8 and 2.0
demonstrate when larger logD values produce higher per-
meation rates, but the effect takes effect only when distribu-
tion coefficient is larger than-1.8 and lower than 2.0.

In eqs 8 and 9, the experimental logD values were used.
In the development of a theoretical prediction model, we
certainly expect that all variables in a model are theoretically
derived descriptors, so the prediction is experimentally
irrespective. It is interesting to compare the performance of
the experimental with calculated logD values, and thus we
performed a correlation between logPeff and the predicted
logD values. From the work reported by Opera and Gottfries,
we obtained the calculated logD values of 44 compounds in
the training set.48 The calculated logD values were obtained
from ACD labs at pH) 7.4.49 It should be noted that the
calculated logD value reported by Opera et al. for prazocin
may be questionable. We calculated logD of prazocin by
using ACD labs at pH) 7.0, and the obtained value is-0.1.
Using the calculated logD values reported by Opera and
Gottfries, 4 compounds showed deviations greater than 2.0
log unit (olsalazine, ganciclovir, timolol, and mannitol). But
the predicted values for olsalazine, ganciclovir, and timolol
would be greatly improved when we used ACD/logD version
8.0. The predicted logD values for olsalazine, ganciclovir,
and timolol calculated by using ACD/logD version 8.0 are
-4.7, -2.1, and-1.4, respectively. Using the calculated
logD values, the obtained correlation is shown as eq 10 in
Table 6.

If we use the experimental logD values, the linear
correlation of eq 10 can be improved significantly (r)0.693,
s)0.588,F)38.9). It is obvious that the performance of the
calculated logD values is not satisfactory. Figure 4 shows
the linear correlation between experimental and calculated

Figure 3. Correlation between logPeff and logD of 77 compounds
in the training set.

1596 J. Chem. Inf. Comput. Sci., Vol. 44, No. 5, 2004 HOU ET AL.



logD values (r)0.92). Really, the ACD logD model predicts
well for most of the 44 compounds selected from training
set, but as shown in Figure 4, 1 compound showed deviation
greater than 2.0 log unit and 7 compounds showed deviations
greater than 1.0 log unit. These deviations may be brought
by many reasons, such as logP prediction, pKa prediction,
or even experimental errors. Now, several approaches have
been developed for pKa predictions, including ACD/pKa

(ACD), Pallas/pKa (Compudrug), and SPARC.50 But until
now, these methods cannot provide very reliable prediction
for some complicated organic molecules. Obviously, in the
prediction of logPeff the experimental logD is more reliable
than the calculated values.

Then, we considered two parameters including logD and
HCPSA in the same equation (eq 11 in Table 6). It is
interesting to find that the Caco-2 permeabilities can be
effectively described by a combination of logD and HCPSA.

(3) Radius of Gyration. Besides hydrophilicity and
hydrophobicity, the bulkiness property of a molecule should
be considered. In the literature, molecular weight is often
used as a simple accessible molecular size descriptor. First,
we introduced molecular weight (MW) to correlation, and
the obtained equation is shown as eq 12 in Table 6.

Compared with eq 11, the statistical significance of eq 12
shows obvious improvement. The negative contribution of
MW demonstrates that larger molecules are unfavorable to
achieve good penetration through Caco-2 monolayers.

Certainly we think that besides molecular weight, the size
of a molecule may be described well by other descriptors,
such as radius of gyration, molecular surface area, or
molecular volume. Here, we introduced radius of gyration,
molecular surface area, and molecular volume to linear
correlation and constructed three equations (eqs 13-15 in
Table 6).

It is obvious that introducing a descriptor concerned with
molecular bulkiness, the correlation can be improved. The
volume shows the best correlation with MW (r)0.95), while
radius of gyration shows the poorest correlation with MW
(r)0.77). Moreover, the correlation between MW and

molecular surface is high (r)0.89). It is obvious that MW
reasonably substitutes for V. Among all these descriptors,
radius of gyration can give the best description of the shape
of a molecule. Judging from the cross-validation coefficient
of the linear equations, the best linear model is eq 13. The
plot of the measured Caco-2 permeability values versus rgyr
is shown in Figure 5. It can be found that the permeability
is not simply correlated to the radius of gyration of the
compounds (r)-0.29). It is not strange considering the
difficulties of describing the shape of a molecule. Actually,
the shape or bulkiness effect of a molecule cannot be simply
described by a simple molecule descriptor.

For small molecules, the influence of molecular flexibility
to rgyr may be ignored. However, for larger compounds,
such as peptides, it may be better to define a hydrodynamic
size or radius. Palm et al. ever proposed the concept of
dynamic polar surface area (PSAd),10 which is the polar van
der Waals surface area Boltzmann-averaged over all low-
energy conformers of a molecule. Here, to investigate the
influence of molecular flexibility to rygy, we proposed a
concept of dynamic rgyr (rgyrd). The conformational en-
semble for each molecule was sampled by using molecular
dynamics (MD). All MD simulations were carried out at 300
K with MMFF94 force field.31 The time step of the
simulations was 1 fs with a cutoff 12 Å for the nonbonded
interactions. MD simulation procedures for each molecule
involved (1) 5 ps of MD simulations for equilibrium and
(2) 200 ps of MD simulations for data collection. In the data
collection stage, every 500 fs, the snapshot was recorded in
the trajectory file. The dynamic radius of gyration was
obtained by averaging the rgyr values over all conformers.
Instead of rgyr with rygrd, we obtained eq 16.

Using rgyrd in correlation, the correlation was not im-
proved. The correlation coefficient between rgyr and rgyrd

is 0.99, implying that the influence of molecular flexibilities
may be negligible.

(4) The Influence of Other Descriptors.The descriptors
listed in Table 4 were added into eq 13 in order. From the
calculated results, we can find that introducing one descriptor
can improve the linear correlation, and the obtained equation

Figure 4. Correlation between experimental and calculated logD
values of 44 compounds selected from the training set (compounds
with predicted error larger than 2.0 are surrounded by circles).

Figure 5. Correlation between rgyr and logPeff of 77 compounds
in the training set.
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is shown as eq 17 in Table 6. But according to leave-one-
out cross-validation coefficient, eqs 17 and 13 do not exist
with large differences. When we used eqs 13 and 17 to
predict the Caco-2 permeabilities of compounds in the test
set, it could be found that eq 17 bear better predictive ability.
The correlation between experimental logPapp values and
calculated values using eq 17 is 0.78, while that between
experimental logPapp values and calculated values using eq
13 is only 0.73.

The descriptor offrotb applied in eq 17 defined the
flexibility of a molecule. The contributions of the descriptor
to logPeff demonstrate that high flexible molecule is favorable
to Caco-2 permeation. The results are reasonable. Compared
with rigid molecules, flexible molecules are easier to adjust
its conformation when they penetrate the Caco-2 monolayers.

Equation 17 only includes four descriptors. Moreover,
from the calculation of the correlation matrix of the
parameters, we found that all descriptors in eq 17 were
independent. Although introduction of other descriptors may
improve the correlation, the addition of more descriptors may
introduce more possibility of random correlation when the
training set is limited. The molecular parameters and the
predicted Caco-2 permeability coefficients using eq 17 for
the compounds in the training set are listed in Table 5. The
linear relationships between experimental and predicted
logPeff values using eq 17 are depicted in Figure 6. In Table
5, it can be found that there are two points (pirenzepin and
terbutaline) with predicted error larger than 1.0. If these three
compounds were considered as outliers and eliminated from
the training set, the statistical parameters of eq 17 were
improved effectively (see eq 18).

Certainly, lacking specific information to explain why
these molecules behave as outliers, their exclusion from the
model was not justified in the present study. Furthermore,
the removal of these two compounds had no major effect
on the predictions made for test set.

Model Validation. The calculatedq (0.78) shows that eq
18 is reliable. Certainly, the high value of LOOq appears
to be the necessary but not the sufficient condition for the
models to have a good predictive power. Golbraikh et al.

ever emphasized that the actual predictive ability of a QSAR
model can only be estimated using an external test set of
compounds that were not used for building the model.51 Here,
the actual prediction powers of eq 17 were validated by an
external test set of 23 compounds. The predicted values using
eq 17 are shown in Table 6. The plot of calculated logPeff

based on eq 17 versus observed values for the tested
compounds is shown in Figure 7. Besides coumarin, the
predicted error for the other tested molecules is smaller than
1.0. The good predictions for the tested compounds confirms
the significance of the selected molecular descriptors and
the model based on them.

It is informative to compare the predictive performance
of reported logPeff models with models developed in this
paper, but now with this kind of comparison exists some
difficulties. Most of the earlier models were based on a
relatively small set of molecules and were not fully validated
by external prediction sets. For example, Palm et al. proposed
the correlation between logPapp and PSAd based on six
â-adrenoreceptor blocking agents.10 Using the same data set,
Segarra et al. developed a linear PLS model based on the
GRID calculations.52 Moreover, PLS regression of MolSurf
descriptors was also used to model the dataset modeled by
Palm et al.12 Van de Waterbeemd et al. have developed a
set of linear regression models based on 17 compounds.11

The QSAR models developed for 17 compounds had a
correlation coefficient less than 0.89. Recently, Fujiwara and
co-workers constructed an equation using five molecular
descriptors from MO calculations. The authors found that a
feed-forward back-propagation neutral network was used to
improve the correlation. The best linear model proposed by
Fujiwara et al. has a regression coefficient of 0.79.14 The
data set used by Fujiwara et al. includes 87 compounds,
which is much larger than those used by other researches.
We think that the model developed by Fujiwara et al. may
be more reliable than some other models, but the predictive
ability of the Fujiwara’s model was not validated by external
tested molecules.

Recently, Ponce et al. proposed several prediction models
based on quadratic indices.16 The training set used by Ponce

Figure 6. Correlation between experimental and calculated logPeff
values of 77 compounds in the training set.

Figure 7. Correlation between experimental and calculated logPeff
values of 23 compounds in the test set.
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et al. is the same 17 molecules used by Van de Waterbeemd
et al. The best model bears very good statistical significantly
(r)0.93). Moreover, authors used an external test set of 20
drugs to evaluate the predictive power of the model. The 20
drugs are also used in our work. Among these 20 drugs, one
(imipramine) is included in the training set, and the others
are included in the test set. The predicted values for the tested
molecules using the Ponce’s model are listed in Table 7.
Inspection of performance of our model shows that it can
perform reasonably well for most compounds, and only one
compound (coumarin) was overestimated. Using the Ponce’s
model, there are 10 compounds with a predicted error larger
than 1.0. Considering all 19 common compounds, the
unsigned mean error using eq 17 is 0.56, which is signifi-
cantly better than that using the Ponce’s model (UME)1.15).
Although the statistical parameters of the Ponce’s model are
very good, its predicted power is very poor. We think that
the data set used by Ponce et al. is so limited. The rather
limited data do not cover a wide range chemical space and
necessarily implied a larger sample size. In a much smaller
region of chemical space, some local models may produce
good fitting between property and descriptors, but the local
models may not have the capability to extrapolate predictions
into regions of chemical space for which the modes have no
data and where the relationships between property and
descriptors may change. For example, if we performed a
correlation between the logPeff values of the 17 compounds
used by Van de Waterbeemd et al.11 and the four descriptors
used in this paper, the correlation coefficient is higher than
0.91. So based on the limited data, the high statistical
qualities of the models are sometimes caused by random
correlation or uncertain factors, and then the obtained models
are not very meaningful from the viewpoint of prediction.

CONCLUSION

In the current work, based on a large set of drug or drug-
like molecules linear correlation models were developed to
estimate Caco-2 permeability data. Four molecules descrip-
tors are crucial to Caco-2 permeation: experimental distribu-
tion coefficient, logD; high-charged polar surface areas based
on Gasteiger partial charges, HCPSA; the radius of gyration,
rgyr; and the fraction of rotatable bonds. These four
descriptors give meaningful physical picture of the molecular
mechanisms involved in Caco-2 permeation: a hydrophobic
molecule can penetrate Caco-2 monolayers easier, but when
the distribution coefficient is larger than 2.0, the influence
of hydrophobicity is not very significant; larger polar surface
areas have more negative contribution to Caco-2 permeability
values, but the contributions are only limited to those atoms
with high-charge densities; larger and rigid molecules will
lead to worse Caco-2 cell penetration ability. The predictions
to the external test set demonstrate that this model bears good
performance and can be used for estimation of Caco-2
permeability for drug and drug-like molecules.

Certainly, the models proposed in the current work are
far from perfect, because the data set used here is limited.
A sufficiently large set of experimental data relating to this
endpoint for the validation is crucial in the development of
the prediction models. So, based on increasing data, the
learning/modeling will need to be an ongoing, iterative
process in which the models are continuously refined.
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