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ADME Evaluation in Drug Discovery. 5. Correlation of Caco-2 Permeation with Simple
Molecular Properties
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The correlations between Caco-2 permeability figg and molecular properties have been investigated. A
training set of 77 structurally diverse organic molecules was used to construct significant QSAR models for
Caco-2 cell permeation. Cellular permeation was found to depend primarily upon experimental distribution
coefficient (lod) at pH = 7.4, high charged polar surface area (HCPSA), and radius of gyration (rgyr).
Among these three descriptors, Dgnay have the largest impact on diffusion through Caco-2 cell because
logD shows obvious linear correlation with [Bgy, (r=0.703) when lo® is smaller than 2.0. High polar
surface area will be unfavorable to achieve good Caco-2 permeability because higher polar surface area
will introduce stronger H-bonding interactions between Caco-2 cells and drugs. The comparison among
HCPSA, PSA (polar surface area), and TPSA (topological polar surface area) implies that high-charged
atoms may be more important to the interactions between Caco-2 cell and drugs. BedidasddgCPSA,

rgyr is also closely connected with Caco-2 permeabilities. The molecules with larger rgyr are more difficult
to cross Caco-2 monolayers than those with smaller rgyr. The descriptors included in the prediction models
permit the interpretation in structural terms of the passive permeability process, evidencing the main role of
lipholiphicity, H-bonding, and bulk properties. Besides these three molecular descriptors, the influence of
other molecular descriptors was also investigated. From the calculated results, it can be found that introducing
descriptors concerned with molecular flexibility can improve the linear correlation. The resulting model
with four descriptors bears good statistical significances 77,r = 0.82,q = 0.79,s = 0.45,F = 35.7.

The actual predictive abilities of the QSAR model were validated through an external validation test set of
23 diverse compounds. The predictions for the tested compounds are as the same accuracy as the compounds
of the training set and significantly better than those predicted by using the model reported. The good
predictive ability suggests that the proposed model may be a good tool for fast screening@.gf flog
compound libraries or large sets of new chemical entities via combinatorial chemistry synthesis.

INTRODUCTION Many factors will influence oral bioavailability. Among
) ] _ them, human intestinal absorption may be one of the most
For the development of bioactive molecules as therapeuucimportam factors. Many in vitro cell culture models have
agents, oral bioavailability is often an important consider- peen investigated as potential tools for drug absorgtion.
ation. Therefore besides sufficient activity, an important goal The most widely used in vitro model is Caco-2 cell lihe.
for drug research is to gain sufficient understanding of the caco-2 cells, a well-differentiated intestinal cell line derived
molecular proper‘ties that limit oral b|Oava||ab|I|ty to facilitate from human colorectal Carcinoma, d|sp|ay many of the
the design of new drug candidates. Now, the developmentmorphological and functional properties of the in vivo
of modern technologies, such as combinatorial chemistry andintestinal epithelial cell barrier. Extensive studies have shown
high throughput screening, into drug discovery has resulted that human oral drug absorption and permeability coefficient
in a vast increase in the number of lead compounds have good correlations, suggesting that the human absorption
synthesized in pharmaceutical drug discovery setting. But can be well predicted by this in vitro modeCaco-2 culture
in most cases such lead compounds demonstrate unfavorablénodels have many advantages. First, it measures the transport
biopharmaceutical properties, such as low oral bioavailability. of the drug across a cell membrane, rather than an interaction
It is believed that over 50% of the candidates failed due to of the drug with the lipid bilayer. Second, it can measure
ADME/Tox deficiencies during developmertTo avoid this the parallel transport routes, both passive and active. How-
failure at the development stage, a set of in vitro ADME ever, it possesses several limitations including long prepara-
screens has been implemented in many pharmaceutication time, very slow absorption times compared to the human
companies with the aim of discarding compounds in early intestine, and large interlaboratory differences in quantitative
stage of drug discovery process. Even though the early stageesults. In light of the limitations in throughput with these
in vitro ADME reduces the probability of the failure at the systems, the development of higher throughput computational
development stage, it is still time-consuming and resource- tools for the reliable prediction of Caco-2 permeability is
intensive. For this reason it is necessary to develop in silico demanding:’

methods for predicting drug-likeness. For a drug molecule across the intestinal epithelium, there
are two important routes for permeation, including passive
* Corresponding author e-mail: xiaojxu@chem.pku.edu.cn. diffusion and carrier-mediated influx via active transport
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mechanism&.t is assumed that with only a few exceptions, comparison can be made because the variability in Caco-2
these orally administered drugs were transported across theassay results among different laboratories is so large. To
intestinal epithelium predominantly by a passive transcellular decrease the deviation produced by different assays, the
process. For passive diffusion, two types exist for permeation, Caco-2 values averaged from different experimental sources
the paracellular and the transcellular routes. Many factors were used in the current work. Here, it should be noted that
will affect the passive intestinal permeability of a molecule simply adopting the average value is not very suitable. For
including lipophilicity, hydrogen bonding capacity, solute example, for 12 compounds obtained from the Hovgaard’s
size, and et &-° Many physicochemical descriptors have work?! the experimental |dgs values for acebutolol,
been introduced to construct the Caco-2 permeability predic- alprenolol, propranolol, and timolol can also be found in
tion models, including polar surface af€dydrogen-bonding  other references. So for compounds obtained from ref 21, if
and size descriptof$ MolSurf-derived descriptorg,Volsurf- some compounds adopt the average values and the other
derived descriptors} MO-calculatiom}* membrane-interac-  compounds adopt the single values, the parallelism within
tion analysis}® and quadratic indice$.Most of the earlier  the same experimental assay will be destroyed. Here, we
models using multiple linear regression (MLR) or partial treated the experimental values from ref 25 as the benchmark,
least-squares (PLS) were based on a relatively small set ofhecause most of the I8g,, values used in this paper are
molecules and not fully validated by external prediction sets. ghtained from ref 25. Besides acebutolol, the difference
For example, in Palm’s work, the training set only includes petween the I0Ba,, value of alprenolol, propranolol, or
six molecules. Some QSPR models have relative goodtimolol provided by ref 21 and that provided by ref 25 is
statistical significances, but their actual predictive abilities gpoyt 0.50. So all experimental values obtained from ref 21
may be questionable. The reliable models can only be were adjusted by adding a constant-68.5. Similarly, all
produced based on enough samples. logP.pp Values for molecules obtained from ref 19 were
In this study, we have investigated a number of different aqjysted by adding a constant eD.7. In the training set,
molecular descriptors and studied their relationships to compound PNU200603 was selected from the Nicolaas's
Caco-2 permeation systematically. Our ultimate goal is 0 \york 26 |n the Nicolaas's work, six factor Xa inhibitors were
find a set of simple descriptors to estimate Caco-2 perme-jyyestigated. Besides PNU200603, the other five inhibitors
ability as high throughput fashion. Moreover, to develop ghow obvious asymmetrical transport, implying active trans-
relatively universal predictive models, we used a large set port or metabolic process may be involved in the absorption
of Caco-2 permeability data from a variety of sources. The , 5ces5. S0 we only selected PNU200603 into the training
whole data set includes 100 drugs or _drug-like moI_ecuIes. set. Considering the difference between the averagesjgg
g?gfgrr tisa xvfhlégg"‘l’jstgg i?]a(tle?iitr L\j/\?oeg(sm this paper is muChvallue of mannitol in Table 4 and 18, determined by
Nicolaas et al., 10Bs of PNU200603 was adjusted by
METHODS adding a constant of 0.6. We believed that the adjustment
using here was reasonable because the different systematic
errors from different assays were not enlarged. Th&dgg
values for most compounds in the test set are obtained from
the work of Camenisch et &.In Camenisch’'s work, the

Data Set.The apparent Caco-2 permeability coefficients
for 110 structurally diverse compounds were taken from 13
references'’ 2° The structurally heterogeneous used covers

Z”r il(?r:\/ill)jnvc\i”sd\fversan?ee ;): dgglaes%g;Sltzrgnin%rltlepg%hl“(gts);ivecaco'z experiments were designed based on the work of
P 9 9 P yp Artursson’s group, since the authors want to combine their

diffusion. The data set was split into a training set of 77 : . .
compounds (Table 1) and a test set of 23 compounds (Tabledata with previously measured compounds in order to have

2). The structures of the compounds were built within the \?v:aarrege;?f?r?nse‘fjﬁssrﬁ:lmgt]:r%lg ?C?ifjg|p$;?$a?§:?r1§;?g:§r-
SYBYL 6.9 molecular simulation package and modeled in P g P ’ '

their neutral forms® Geometry optimization was performed one, and mannitol. With the exc_:ep,tlon of man_n_|tol, It was
by using molecular mechanism with MMEF force fiefd, demonstrated that the Camenish’s permeability data are

and the terminal condition was the RMS of potential energy \(/jvetll ?O:Lela}Ffd \;V't;?:nd ql:ﬁntlltatlve(ljy tne_arl_yr/ |bd|en":|cal to
smaller than 0.001 kceéh~1-mol~. For these flexible ata in the literaturé. From the lo@ data in Table 4, we

compounds, the conformational analyses were performed tocan fmq that th_e experimental values from refs 17 "’T”d 24
determine the most stable conformers. The models were the how high cons_lstency, SO We can say that the experimental
saved in two MACCS sdf databases named training.sdf and 9P values in the training set and the test set are
test.sdf for further analysis. The MACCS sdf database files COMparative.
are available in the Supporting Information. Descriptors Used in Multiple Linear Regression. (1)
The Caco-2 permeability coefficients for all compounds Hydrophobicity Descriptor. The experimental Idg values
are shown in Table 4. From Table 4, it can be found that at pH 7.4 for all compounds were obtained from the
even for the same compound, the experimentd®ggalues  literature:®-2125-29.3435t should be noted that the IBgvalues
from different sources exist obvious variation. This is not for the same compound might exist with some differences
strange. Artursson et al. showed that there exist largein a different reference. For example, the Ibgalues for
variances in Caco-2 cell results due to factors such as cellatenolol from refs 25 and 29 are-1.29 and —2.14,
passage number, culture time, type of support, and me#fium. respectively. In most cases, the averag®leglue was used.
Egan et al. conducted a small survey of published Caco-2 Sometimes, the logD value for one compound could be found
cell permeability data and found that average percent relativein three references. In these cases, if these three values do
standard deviation (%RSD) was in the range of-28.3%3 not exist with a large difference, the average value was used.
So large cautions must be taken to ensure that a meaningfuBut if one value exists with large differences compared with
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Table 1. 2D Structures of Compounds in the Training Set
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Table 1 (Continued)
25. Diazepam 26. Dopamine 27. Doxorubicin
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Table 1 (Continued)
73. Uracil 74. Urea 75. Warfarin

76. Zidovudine 77. PNU200603

N

HN N\
ol T
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o

the other two values, this value was treated as outlier andatoms. Here, the GasteigeMarsili method was used to
rejected. All experimental Idg values are presented in calculate the partial chargé&and the PSA surrounding those
Tables 4 and 5. polar atoms with absolute partial charges larger tharjd).1

As a comparison, the predicted logP values were alsowas treated as the high-charged polar surface area (HCPSA).
calculated. The logP values for all compounds were calcu- As a Comparison, the topological polar surface area
lated using the SLOGP method developed in our gfSup. (TPSA) was calculated. The concept of TPSA was originally
SLOGP estimates the IBgvalues by summing the contribu-  proposed by Ertl et & The procedure calculates TPSA from
tion of atom-weighted solvent accessible surface areas2-D molecular bonding information only, so it allows PSA
(SASAand correction factors. Comparison of various proce- calculations to be implemented in virtual screening ap-
dures of log® calculation for the external test set demonstrates proaches. Here, the SMARTS definition and the contributions
that our method bears very good accuracy and is comparabléor different atom types were obtained from the Ertl's work.
or even better than the fragment-based approaches. The number of hydrogen-bond donomgp) and acceptors

(2) Hydrophilicity Descriptor. Due to the physical nature  (,..,) were obtained using the Patty ruf8swhich were
of the lipid bilayer, organic molecules, which can form jnterpreted by OELIB2 We defined a parameter file to store
favorable hydrogen-bonding or electrostatic interactions with featyres of atoms that can form hydrogen bonds. These atoms
lipid bilayer, may exist with great difficulties in Caco-2 ere divided into three categories hydrogen-bond donor
penetration. To cross a membrane, a drug molecule needsypp), hydrogen-bond acceptor (HBA), and polar atom
to break hydrogen bonds with its aqueous environment. The(po|) that has a lone electron pair and a polar hydrogen

more potential hydrogen bonds a molecule can make, thegiom and can be treated as a hydrogen-bond donor or
more energy this bond breaking costs, and so high hydmge”hydrogen-bond acceptor.

bonding potential is an unfavorable property that is often
related to low permeability and absorption. A variety of
computational approaches have addressed the problem o

ﬁsilmatltng hycc)irogder[ll-bondl?g E[:r?pa(:lty,_(;angtl_ng fr;)m sllmplle water this dependence is relatively small, while for trans-
eteroatom (O and N) counts, the consideration of molecu €Scellular diffusion in biological membranes, a rather strong

in terms of the number of hydrogen-bond acceptors and dependence on molecular size could be observed. The para-

donors, and more sophisticated measures that take NOcellular diffusion through the tight junctions of the biological

aclcount SUCh param:étaArs ?sdfreed-?[r;?rg)l; factors and t(ﬁy{]a"?' embrane is, because of the restricted size of these agqueous
polar surface area ( ). Indeed it has been proven that po arpores, also dependent upon molecular 4tZEhe simplest

surface area (PS.A) IS a very S|gn|f|<_:ant o_Iescnptor for_ drug escriptor concerned with molecular size is molecular weight
transport properties such as human intestinal permeation an MW). However, molecular weight may be so simple to de-

_blolo?j—bra“n barrier tpenetrz;ttlc?ri. He;e, the [:I)folartatoms q scribe the shape of a molecule. For example, there are two
Ir?cdu €a otxygen a omsi n(; ro%ﬁqﬁ omsé Slfj L:,r z_at'omi,\ and molecules with similar molecular weights; if one molecule
y Irogten atoms cogrlljec el WII e”f]' y t'e nt "g‘st . is thin and the other one is global, the Caco-2 permeability
evaluation requires molecular contormation and atomiC ¢ ype thin molecule may be easier than the global one.
surface area. Here, molecular solvent accessible surface areas ) .
Compared with MW, two descriptors of molecular volume

were calculated using the MSMS program and the probe and molecular surface area should be more suitable to

radius was set to 0.5 X describe the shape of a molecule. Here, molecular volume
Generally, as a polar atom, it should be highly electroneg- (V) and moIecuIaF; solvent-accessible su,rface area (SASA)
ative and possess high density of charge. If the charge den-Were estimated using the MSMS progr&oreover, radius

Sity on an oxygen atom or a nitrogen atom is very low, it of gyration (rgyr) was calculated using the following equation
may not produce strong hydrogen bond or electrostatic in- 9y (rayn) 9 9eq

teractions with other polar atoms. In our previous work, we

proposed a new concept of high-charged polar surface area

(HCPSA)38 According to our definition, only polar atoms rgyr =
with high charge densities belong to high-charged polar

(3) Molecular Bulkiness Descriptors.Molecular size is
very important factor influencing the diffusion in biological
embrane and continuous fluid medfak-or diffusion in

1)
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Table 2. 2D Structures of Compounds in the Test Set
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Table 3. Experimental o0&« Values for Molecules in the Data Set

no. A B C D E F G H I J K L M loPeir
1 —5.35 —6.29 —5.83
2 —4.11 —4.61
3 —5.62 —4.51 —5.04 —5.06
4 —5.70 —6.60 —6.15
5 —4.39 —4.39 —4.12 —4.60 —4.62
6 —3.97 —4.47
7 —4.44 —4.44
8 —4.52 —4.52
9 —5.40 —5.40
10 —6.70 —6.69 —6.3 —6.28 —6.50
11 —4.31 —4.81
12 —4.02 —4.52
13 —5.10 —5.10
14 —4.30 —4.51 —4.41
15 —4.69 —4.69
16 —6.72 —6.72
17 —4.70 —4.70
18 —6.30 —5.51 —5.86 —5.89
19 —4.52 —4.66 —4.59
20 —4.26 —4.67 —4.47
21 —4.67 —4.61 —4.64
22 —4.90 —4.57 —4.63 —4.91 —4.75
23 —6.36 —6.36
24 —5.94 —5.94
25 —4.15 —4.48 —4.32
26 —5.03 —5.03
27 —6.80 —6.80
28 —5.43 —5.43
29 —4.77 —4.77
30 —4.64 —4.64
31 —5.57 —6.42 —5.99
32 —4.44 —4.44
33 —5.82 —6.29 —6.06
34 —4.67 —4.45 —4.85 —4.66
35 —4.28 —4.28
36 —4.85 —4.85
37 —4.69 —4.69
38 —5.03 —5.03
39 —6.75 —5.49 —6.19 —6.42 —6.21
40 —4.71 —4.71
41 —3.88 —3.88
42 —5.92 —5.92
43 —6.16 —6.16
44 —4.57 —4.57 —4.63 —4.59
45 —5.41 —5.41
46 —4.13 —4.13
47 —4.52 —4.52
48 —4.71 —4.71
49 —6.96 —6.96
50 —4.18 —4.68
51 —4.01 —4.51
52 —4.61 —4.61
53 —4.57 —4.57
54 —4.78 —4.78
55 —6.36 —6.36
56 —4.45 —4.45
57 —6.05 —6.05 —6.05
58 —4.36 —4.36
59 —4.10 —4.63 —4.37
60 —4.38 —4.38 —4.08 —4.56 —4.66 —4.58
61 —3.98 —4.48
62 —4.69 —4.69
63 —6.31 —6.31
64 —4.92 —4.66 —4.79
65 —4.93 —4.93
66 —5.77 —5.77
67 —6.89 —6.52 —6.71
68 —4.82 —4.82
69 —6.42 —6.33 —6.38
70 —4.29 —4.14 —4.60 —4.34
71 —4.35 —4.89 —4.85
72 —4.10 —4.60
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Table 3 (Continued)

no. A B C D E F G H I J K L M loPesr
74 —5.34 —5.34
75 —4.42 —4.68 —4.55
76 —5.16 —5.16
77 —6.85 —6.85
Al —6.10 —6.10
A2 —4.55 —4.55
A3 —6.05 —6.05
A4 —4.53 —4.30 —4.31 —4.38
A5 —5.64 —5.64
A6 —6.92 —6.09 —6.51
A7 —4.86 —4.14 —4.50
A8 —4.11 —4.11
A9 —4.35 —4.35
A10 —6.02 —6.02
All —4.71 —4.71
Al12 —4.21 —4.21
Al13 —4.90 —4.90
Al4 —6.16 —6.16
Al5 —4.77 —4.77
Al6 —4.81 —4.81
Al7 —4.58 —4.58
Al8 —5.98 —5.98
A19 —6.20 —6.20
A20 —6.88 —6.88
A21 —6.13 —6.13
A22 —6.26 —6.26
A23 —4.87 —4.87

a References: A (Artusson 1990), B (Artursson 1991), C (Haeberlin 1993), D (Rubas 1993), E (Hovgaard 1995), F (Augustijins 1996), G (collett
1996), H (Yee 1997), | (Yazdanian 1998), J (Nicolaas 2001), K (Zhu 2002), L (Saha 2002), M (Camenisch 1998).

Table 4. Symbols and Descriptions of Other Molecular Descriptors Used in Correlation

symbol descriptor symbol description

Natom number of all atoms Nnd number of all bonds

Naromatic number of aromatic atoms niro number of hydrophobic atoms

froth fraction of rotatable bonds density mass density

dipole dipole moment Hf heat of formation

W Weiner index z Hosoya index

Zagreb Zagreb index iy solvation free energy using the SAWSA model
wherem is the mass of théth atom,r; are the center-of- Statistics of the Models.The statistics of a model was
mass coordinates in the system, avidis the total nuclear  mainly tested by its linear correlation coefficiern @nd
mass. leave-one-out cross-validation correlation coefficieq}. (

It should be noted that some descriptors including V, Cross-validatedy is defined agy? = (SSY—-PRESS)/SSY,
SASA, and rgyr are conformation-dependent. For all mol- where SSY is the sum of squared deviations of the dependent
ecules the energy-lowest structures were considered. Invariable values from their mean, and PRESS is the prediction
preliminary calculations using a set of low-energy conforma- error sum of squares obtained from the leave-one-out cross-
tions from molecular dynamics it was found that the standard validation procedure. Moreover, the standard deviation value
deviations of these three descriptors were usually in the order(s) and the Fisher value=j were reported for each model.
of 5%. We do not consider this as critical for the present
analyses. Furthermore, for conformationally flexible com- RESULTS AND DISCUSSION
pounds the actual conformation penetrating a membrane is

difficult to estimate. The ensemble-averaged property of a  Descriptors in QSPR Models. (1) Polar Surface Area.
molecule does not equal to that of the actual conformation In 1992, Van de Waterbeemd et al. correlated the PSAs of

in a membrane. a series of CNS drugs to membrane transport ffrst.
(4) Other Molecular Descriptors. To investigate the  Thenceforward, PSA has become a very popular parameter
potential influence of other molecular descriptors to Caco-2 for the prediction of molecular transport properties, particu-
permeab“itieS, we introduced many other descriptors to linear Iarly intestinal absorption and blood-brain barrier penetration.
correlation. These descriptors include six constitutional and Here, we first carried out a simple linear regression of the
geometrical descriptors, three topological descriptors, two 77 training set compounds using polar surface area (PSA)
physicochemical descriptors, and one solvation descriptor.0r topological polar surface area (TPSA) as the only
The symbol and descriptions of these descriptors are listeddescriptor. The resulting equations (egs 2 and 3) and statistics
in Table 4. The solvation descriptor was calculated using are listed in Table 6.
the SAWSA model developed in our grotfpand the other Compared with TPSA, PSA can obtain better correlation
descriptors were calculated using a revised drug-BB programwith Caco-2 permeabilities. Palm et al. ever performed a
developed in our groufs correlation between dynamic polar vdW surface areas and
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Table 5. Molecules Descriptors and Predicted Values offiggfor Compounds in the Training Set

Hou ET AL.

name lodPert (€XP) lodD rgyr rgyly HCPSA TPSA Nrotb logPet (calc) residue
acebutolol —5.83 —0.09 4.64 4.51 82.88 87.66 0.31 —5.30 —0.53
acebutolol ester —4.61 1.59 5.12 5.03 77.08 93.73 0.29 —4.89 0.28
acetylsalic acid —5.06 —-2.25 3.41 3.24 79.38 89.9 0.23 —5.77 0.71
acyclovir —6.15 —1.80 3.37 3.23 120.63 114.76 0.21 —5.91 —0.24
alprenolol —4.62 1.38 3.68 3.69 38.92 41.49 0.29 —4.58 —0.04
alprenolol ester —4.47 2.78 3.84 3.88 35.53 47.56 0.27 —4.39 —0.08
aminopyrin —4.44 0.63 2.97 2.97 20.81 26.79 0.17 —4.63 0.19
artemisinin —4.52 2.22 2.75 2.75 54.27 53.99 0.07 —4.47 —0.05
artesunate —5.40 —0.88 4.02 3.62 102.05 100.52 0.16 —5.64 0.24
atenolol —6.44 —-1.81 4.58 4.52 86.82 84.58 0.29 —5.85 —0.59
betazolol ester —4.81 0.28 5.41 5.27 43.02 50.72 0.27 —5.20 0.39
betazolol_ —4.52 0.63 5.64 5.39 47.14 56.79 0.26 —5.13 0.61
bremazocine —5.10 1.66 3.43 3.38 49.56 43.7 0.15 —4.57 —0.53
caffeine —4.41 0.02 2.47 2.47 45.55 58.44 0.12 —4.89 0.48
chloramphenicol —4.69 1.14 3.75 3.73 113.73 115.38 0.28 —-5.11 0.42
chlorothiazide —6.72 -1.15 3.11 3.11 138.76 118.69 0.08 —5.87 —0.85
chlorpromazine —4.70 1.86 3.74 3.69 4.60 6.48 0.14 —4.38 -0.32
cimetidine —5.89 —0.36 4.26 4.24 105.44 88.89 0.33 —5.55 —0.34
clonidine —4.59 0.78 2.79 2.79 30.03 36.42 0.08 —4.69 0.10
corticosterone —4.47 1.78 3.68 3.71 75.95 74.6 0.10 —4.78 0.31
desipramine —4.67 1.57 34 3.42 13.8 15.27 0.11 —4.46 —0.21
dexamethas —4.75 1.89 3.6 3.66 90.74 94.83 0.13 —4.77 0.02
dexamethag-D-glucoside —6.54 0.58 5.67 5.28 163.95 173.98 0.17 —5.83 -0.71
dexamethag-D-glucuronide —6.12 —1.59 5.75 5.23 186.88 191.05 0.17 —6.55 0.43
diazepam —4.32 2.58 3.28 3.28 25.93 32.67 0.06 —4.45 0.13
dopamine —5.03 —0.80 2.67 2.68 75.13 66.48 0.23 —5.27 0.24
doxorubici —6.80 —0.16 4.85 4.9 186.78 206.07 0.18 —6.00 —0.80
erythromycin —5.43 1.26 4.99 5.01 138.69 193.91 0.21 —5.13 —0.30
estradiol —4.77 2.24 3.44 3.44 44.34 40.46 0.06 —4.57 —0.20
felodipine —4.64 3.48 3.39 3.48 50.34 64.63 0.22 —4.44 —0.20
ganciclovir —6.27 —0.87 3.7 3.48 139.45 134.99 0.25 —5.79 —0.48
griseofulvin —4.44 2.47 3.37 3.37 67.55 71.06 0.16 —4.59 0.15
hydrochlorothiazide —6.06 —0.12 3.11 3.11 142.85 118.36 0.08 —5.62 —0.44
hydrocortisone —4.66 1.48 3.72 3.79 93.37 94.83 0.12 —4.94 0.28
ibuprophen —4.28 0.68 3.45 3.36 39.86 37.3 0.24 —4.78 0.50
imipramine —4.85 2.52 3.44 3.45 3.56 6.48 0.13 —4.28 —0.57
indomethacin —4.69 1.00 4.16 3.16 67.13 68.53 0.19 —5.00 0.31
labetalol —5.03 1.24 4.61 4.46 93.29 95.58 0.24 —5.09 0.06
mannitol —-6.21 —2.65 2.48 2.59 127.46 121.38 0.44 —5.87 -0.34
meloxicam —-4.71 0.03 3.34 3.36 93.21 99.6 0.16 —5.27 0.56
methanol —4.58 —0.70 0.84 0.84 25.64 20.23 0.20 —4.67 0.09
methotrexate —5.92 —2.53 5.33 5.18 204.96 210.54 0.26 —6.79 0.87
methylscopolamine —6.16 —-1.14 3.67 3.74 51.29 59.06 0.16 —5.37 —0.79
metoprolol —4.59 0.51 4.59 4.53 44.88 50.72 0.30 —4.99 0.4
nadolol —-5.41 0.68 4.37 4.1 86.73 81.95 0.24 —5.15 —0.26
naproxen —4.83 0.42 3.38 3.43 76.98 46.53 0.19 —5.09 0.26
nevirapine —4.52 1.81 2.94 2.94 36.68 58.12 0.05 —4.49 —0.03
nicotine —-4.71 0.41 25 25 15.1 16.13 0.07 —4.65 —0.06
olsalazine —6.96 —4.50 4.62 4.37 144.08 139.78 0.27 —6.97 0.01
oxprenolol —4.68 0.45 3.63 3.56 48.62 50.72 0.31 —4.84 0.16
oxprenolol ester —451 1.98 3.87 3.9 49.58 56.79 0.29 —4.45 —0.06
phencyclidine —4.61 1.31 291 291 1.49 3.24 0.04 —4.42 —0.19
phenytoin —-4.57 2.26 2.97 2.97 65.63 58.2 0.06 —4.60 0.03
pindolol —4.78 0.19 3.71 3.71 52.80 57.28 0.23 —5.02 0.24
pirenzepine —6.36 —0.46 3.55 3.40 59.71 68.78 0.08 —5.30 —1.06
piroxicam —4.45 —0.07 3.17 3.26 99.19 99.6 0.13 —5.31 0.86
pnu200603 —6.25 —4.00 3.89 3.79 69.89 91.44 0.15 —6.37 0.12
practolol —6.05 —1.40 4.02 4.09 64.79 70.59 0.29 —5.50 —0.55
prazocin —4.36 1.88 4.96 4.99 86.76 106.95 0.15 —5.05 0.69
progesterone —4.37 3.48 3.58 3.62 38.10 34.14 0.07 —4.54 0.17
propranolol —4.58 1.55 3.63 3.53 40.42 41.49 0.22 —4.57 -0.01
propranolo ester —4.48 3.02 4.13 4.06 36.21 47.56 0.22 —4.50 0.02
quinidine —4.69 2.04 3.25 3.30 43.77 45.59 0.14 —4.46 —0.23
ranitidine —6.31 —0.12 5.13 4.57 105.15 86.26 0.33 —5.60 -0.71
salicylic acid —4.79 —1.44 2.14 2.14 61.71 57.53 0.19 —5.29 0.50
scopolamine —4.93 0.21 3.63 3.49 57.35 62.30 0.15 —5.07 0.14
sucrose —5.77 —-3.34 3.49 3.54 187.69 189.53 0.28 —6.56 0.79
sulfasalazine —6.33 —0.42 5.68 5.53 133.67 141.31 0.20 —6.06 —0.27
telmisartan —4.82 241 5.29 5.01 55.48 72.94 0.15 —4.85 0.03
terbutaline —6.38 —-1.07 3.15 3.15 79.52 72.72 0.29 —5.36 —1.02
tesosterone —4.34 3.11 3.33 3.33 42.35 37.3 0.06 —4.53 0.19
timolol —4.85 0.03 4.02 4.01 100.74 79.74 0.24 —5.35 0.50
timolol ester —4.60 1.74 3.98 4.13 96.25 85.81 0.23 —4.82 0.22
uracil —5.37 -1.11 1.84 1.84 66.72 58.20 0.00 —5.23 -0.14
urea —5.34 —-1.64 1.23 1.23 82.72 69.11 0.29 —5.29 —0.05
warfarine —4.68 0.64 3.45 3.50 59.47 63.60 0.15 —4.95 0.27
zidovudine —5.16 —0.58 3.14 3.13 96.33 103.59 0.18 —5.43 0.27
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Table 6. Multivariate Prediction Models for Caco-2 Permeabilities
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log Peff = —4.28— 0.011PSA

(n=77,r=0.664,q=0.647,5=0.566,F=60.0)

log Peit = —4.36— 0.010TPSA

(n=77,r=0.636,q=0.612,5=0.583,F=50.9)

log Peff = —4.27— 0.011HCPSA

(n=77,r=0.678,q=0.661,5=0.558,F=63.9)

|Og Peit = —4.49— 0-279']HBD

(n=77,r=0.670,q=0.647,5=0.562,F=60.9)

log Pesf = —4.45— 0.158a

(n=77,r=0.523,q=0.484,5=0.644,F=28.3)

log Per = —5.469+ 0.236logP

(n=77,r=0.471,0=0.437,5=0.657,F=24.0)

log Per = —5.265+ 0.3100g D

(n=77,r=0.706,q=0.691,5=0.536,F=74.6)

log Pest = —5.3034 0.406< —1.8 < log D < 2.0>

(n=77,r=0.714,q=0.698,5=0.531,F=78.0)

@)
®)
(4)
®)
(6)
@)
®)
©)

log Pett = —5.102+ 0.166l0gDcalc (10)
(n=44,r=0.462,g=0.349,5=0.723,F=11.4)
log Peff = —4.719+ 0.281< —1.8 < log D < 2.0> —0.0069HCPSA (11)
(n=77,r=0.798,q=0.774,5=0.460,F=64.9)
log Peff = —4.513+ 0.359< —1.8 < log D < 2.0> —0.0041HCPSA— 0.0014MW 12)
(n=77,r=0.811,q=0.781,5=0.450, F=46.8)
log Peff = —4.300+ 0.325< —1.8 < log D < 2.0> —0.0049%{CPSA— 0.16Qgyr (13)
(n=77,r=0.817,q=0.789,5=0.443,F=49.0)
log Pest = —4.386+ 0.343< —1.8 < logD < 2.0> —0.0053GHCPSA— 0.0013BASA (14)
(n=77,r=0.813,q=0.782,5=0.447 F=47.6)
log Petf = —4.475+ 0.357< —1.8 < log D < 1.8> —0.0050HCPSA— 0.00174/ (15)
(n=77,r=0.813,q=0.781,5=0.448 F=47.4)
log Pet = —4.277+ 0.330< —1.8 < log D < 2.0> —0.0049HCPSA— 0.17Ggyrqy (16)
(n=77,r=0.817,q=0.789,5=0.444,F=48.7)
log Peit = —4.392+ 0.252< —1.8 < log D < 2.0 > —0.00484HCPSA— 0.193gyr + 1.06G o 17)
(n=77,r=0.824,q=0.790,5=0.439,F=38.1)
log Peff = —4.358+ 0.317< —1.8 < log D < 2.0> —0.00558{CPSA— 0.179gyr + 1.07401 (18)
(n=74,r=0.845,q=0.812,5=0.405,F=43.1)
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Figure 1. Correlation between |dg« and PSA for six3-adreno-

receptor antagonists.

Caco-2 permeability coefficient and found that they were

IogPeff

Figure 2. Correlation between ldgs and HCPSA of 77 com-
pounds in the training set.

In our previous work of blood-brain partitioning predic-

well linearly correlated. Compared with the model developed tion 28 we proposed the concept of high-charged polar surface
by Palm et al., eq 2 seems very poor. But it should be notedarea (HCPSA). Using HCPSA, we constructed eq 4 (Table
that in Palm’s work, only siy3-adrenoreceptor antagonists 6). Compared with eq 2, eq 4 shows a better correlation,

were used in correlatio. If we only used these several

implying that only high-charged polar surface areas impact

molecules, high linear correlation could also be obtained (seethe Caco-2 permeation. Figure 2 shows the linear correlation
Figure 1). These six antagonists bear similar basic structurespetween Caco-2 permeabilities and HCPSA.

so the change of Caco-2 permeabilities may be simply Here, we used two descriptors includingsa and nugp
explained by one molecular descriptor. It is obvious that the in MLR, and the resulting equations (eqs 5 and 6) are listed
model based on PSA cannot be treated as a universalin Table 6. It is interesting to find that the number of

principle to predict Caco-2 permeabilities.

hydrogen donor shows a high correlation with Caco-2
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Figure 3. Correlation between Idgy; and logD of 77 compounds
in the training set.

permeability. The correlation betweamsp and Caco-2
permeabilities is a little worse than that between HCPSA
and Caco-2 permeabilities. But compared with PSA, TPSA,
and HCPSA, the descriptor of;sa Shows poorer correla-
tions. In fact, the descriptor HCPSA shows significant
correlation withnygp. The correlation between HCPSA and
Nuep IS 0.84, indicating that the descriptor of hydrogen bonds
may be partly replaced by the descriptor HCPSA.

logD. Drug lipophilicty is widely used as a predictor of

Hou ET AL.

Figure 3, it can be found the relationship between Caco-2
and logD could not be simply described by a linear
regression, while it also cannot be described effectively by
a sigmodal fitting. A sigmoidal curve should possess two
plateau regions at the low and the high values of variable.
From Figure 3, it can be found that only compounds with
high permeabilities form a distinct plateau region. For
example, when the Idy values are higher than approxi-
mately 2.0, all the compounds have high cellular permeability
coefficients independent of the distribution coefficient or net
charges of the compounds at pH 7.4. However, for com-
pounds below this threshold value, it seems that more
lipophilic compounds have higher Caco-2 cell permeability
coefficient in general. So, it is obvious that the influence of
logD to Caco-2 permeabilities will fall into a certain range.
To discover the effective range of Ibgwe applied a two-
parameter spline model for @y The spline model was
denoted with angled brackets. For exampi®<logD <a>
was equal to loB if logD is smaller thara or larger tharb;
otherwise, it will bea or b when lod is larger thama or
smaller thanb. The regression with splines allows the
incorporation of features that do not have a linear effect over
their entire range. To determine the best valua of b, a
systematical search was used to change this value from
—3 to 3 using a step of 0.1. From the calculated results, we
could find that the correlation is very sensitive to the variation
of b but nota. The best equation is presented as eq 9 in
Table 6.

Compared with eq 8, the statistical significance of eq 9 is
improved obviously. The threshold values-61.8 and 2.0
demonstrate when larger IDgvalues produce higher per-

membrane permeability since it is assumed that drug meation rates, but the effect takes effect only when distribu-

partitioning into the (lipophilic) cell membranes is a rate-
determining process for passive membrane permeéiitie.
standard for expressing lipophilicity is the partition coef-
ficient P (or log P to have a more convenient scale) in an
octanol/water system. Here, a direct fitting of Pbgalues
with logBB values of the compounds in the training set
produced amr of approximately 0.47 (eq 7 in Table 6).
From regression coefficient, the correlation betweeRpg
and lodP is not very high. In fact, loB values can only be
a first estimate of the lipophilicity of a compound in a
biological environment. For many organic molecules, they
will exist in a different ionizable state in different pH. To
consider the influence of ionization to lipophilicity, the
distribution coefficient (lo®) instead of lo§ was used in

tion coefficient is larger thar-1.8 and lower than 2.0.

In egs 8 and 9, the experimental logD values were used.
In the development of a theoretical prediction model, we
certainly expect that all variables in a model are theoretically
derived descriptors, so the prediction is experimentally
irrespective. It is interesting to compare the performance of
the experimental with calculated logD values, and thus we
performed a correlation between g and the predicted
logD values. From the work reported by Opera and Gottfries,
we obtained the calculated logD values of 44 compounds in
the training set® The calculated logD values were obtained
from ACD labs at pH= 7.4%° It should be noted that the
calculated logD value reported by Opera et al. for prazocin
may be questionable. We calculated logD of prazocin by

fitting (eq 8). The plot of measured Caco-2 permeability data using ACD labs at pH= 7.0, and the obtained value-9.1.
versus experimental logD values is shown in Figure 3. The Using the calculated logD values reported by Opera and

distribution coefficients refer to the same pH as the perme-

Gottfries, 4 compounds showed deviations greater than 2.0

ability data, and therefore some of the compounds are log unit (olsalazine, ganciclovir, timolol, and mannitol). But

charged under these conditions.

Compared with eq 7, the correlation coefficient and the
Fisher value of eq 8 were improved significantly. Obviously,
for partition processes in the body, the distribution coefficient
D for which an aqueous buffer at pH 7.4 (blood pH) is used

in the experimental determination-often provides a more

meaningful description of lipophilicity, especially for ioniz-
able compounds.

Some previous efforts to correlate logD to Caco-2 cell
permeability coefficients yielded mixed results. For example,
Hilgers et al. have reported a sigmoidal relationsHip,
whereas Artursson observed a poor linear correl&tfmm

the predicted values for olsalazine, ganciclovir, and timolol
would be greatly improved when we used ACD/logD version
8.0. The predicted logD values for olsalazine, ganciclovir,
and timolol calculated by using ACD/logD version 8.0 are
—4.7,—2.1, and—1.4, respectively. Using the calculated
logD values, the obtained correlation is shown as eq 10 in
Table 6.

If we use the experimental logD values, the linear
correlation of eq 10 can be improved significantly=0.693,
s=0.588,F=38.9). It is obvious that the performance of the
calculated logD values is not satisfactory. Figure 4 shows
the linear correlation between experimental and calculated
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Figure 4. Correlation between experimental and calculated logD Figure 5. Correlation between rgyr and 1Bg of 77 compounds
values of 44 compounds selected from the training set (compoundsin the training set.
with predicted error larger than 2.0 are surrounded by circles).
molecular surface is highr€0.89). It is obvious that MW

logD values (=0.92). Really, the ACD logD model predicts reasonably substitutes for V. Among all these descriptors,
well for most of the 44 compounds selected from training radius of gyration can give the best description of the shape
set, but as shown in Figure 4, 1 compound showed deviationof a molecule. Judging from the cross-validation coefficient
greater than 2.0 log unit and 7 compounds showed deviationsof the linear equations, the best linear model is eq 13. The
greater than 1.0 log unit. These deviations may be broughtplot of the measured Caco-2 permeability values versus rgyr
by many reasons, such as logP predictio, prediction, is shown in Figure 5. It can be found that the permeability
or even experimental errors. Now, several approaches havas not simply correlated to the radius of gyration of the
been developed for Ky predictions, including ACD/M, compounds r=—0.29). It is not strange considering the
(ACD), Pallas/[Ka (Compudrug), and SPAR®.But until difficulties of describing the shape of a molecule. Actually,
now, these methods cannot provide very reliable prediction the shape or bulkiness effect of a molecule cannot be simply
for some complicated organic molecules. Obviously, in the described by a simple molecule descriptor.
prediction of lodPe the experimental logD is more reliable For small molecules, the influence of molecular flexibility
than the calculated values. to rgyr may be ignored. However, for larger compounds,

Then, we considered two parameters includinddand such as peptides, it may be better to define a hydrodynamic
HCPSA in the same equation (eq 11 in Table 6). It is size or radius. Palm et al. ever proposed the concept of
interesting to find that the Caco-2 permeabilities can be dynamic polar surface area (PA° which is the polar van
effectively described by a combination of Bgnd HCPSA. der Waals surface area Boltzmann-averaged over all low-

(3) Radius of Gyration. Besides hydrophilicity and  energy conformers of a molecule. Here, to investigate the
hydrophobicity, the bulkiness property of a molecule should influence of molecular flexibility to rygy, we proposed a
be considered. In the literature, molecular weight is often concept of dynamic rgyr (rgy)y. The conformational en-
used as a simple accessible molecular size descriptor. Firstsemble for each molecule was sampled by using molecular
we introduced molecular weighMW) to correlation, and  dynamics (MD). All MD simulations were carried out at 300
the obtained equation is shown as eq 12 in Table 6. K with MMFF94 force field3* The time step of the

Compared with eq 11, the statistical significance of eq 12 simulations was 1 fs with a cutoff 12 A for the nonbonded
shows obvious improvement. The negative contribution of interactions. MD simulation procedures for each molecule
MW demonstrates that larger molecules are unfavorable toinvolved (1) 5 ps of MD simulations for equilibrium and
achieve good penetration through Caco-2 monolayers. (2) 200 ps of MD simulations for data collection. In the data

Certainly we think that besides molecular weight, the size collection stage, every 500 fs, the snapshot was recorded in
of a molecule may be described well by other descriptors, the trajectory file. The dynamic radius of gyration was
such as radius of gyration, molecular surface area, or obtained by averaging the rgyr values over all conformers.
molecular volume. Here, we introduced radius of gyration, Instead of rgyr with rygy, we obtained eq 16.
molecular surface area, and molecular volume to linear Using rgyg in correlation, the correlation was not im-
correlation and constructed three equations (egs153in proved. The correlation coefficient between rgyr and ggyr
Table 6). is 0.99, implying that the influence of molecular flexibilities

It is obvious that introducing a descriptor concerned with may be negligible.
molecular bulkiness, the correlation can be improved. The (4) The Influence of Other Descriptors.The descriptors
volume shows the best correlation with M\WWH0.95), while listed in Table 4 were added into eq 13 in order. From the
radius of gyration shows the poorest correlation with MW calculated results, we can find that introducing one descriptor
(r=0.77). Moreover, the correlation between MW and canimprove the linear correlation, and the obtained equation
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Figure 6. Correlation between experimental and calculate®lgg Figure 7. Correlation between experimental and calculate®lgg
values of 77 compounds in the training set. values of 23 compounds in the test set.

is shown as eq 17 in Table 6. But according to leave-one- ever emphasized that the actual predictive ability of a QSAR
out cross-validation coefficient, eqs 17 and 13 do not exist model can only be estimated using an external test set of
with large differences. When we used egs 13 and 17 to compounds that were not used for building the mételere,
predict the Caco-2 permeabilities of compounds in the testthe actual prediction powers of eq 17 were validated by an
set, it could be found that eq 17 bear better predictive ability. external test set of 23 compounds. The predicted values using
The correlation between experimental Rag, values and eq 17 are shown in Table 6. The plot of calculatedPlgg
calculated values using eq 17 is 0.78, while that betweenbased on eq 17 versus observed values for the tested
experimental l084,p values and calculated values using eq compounds is shown in Figure 7. Besides coumarin, the
13 is only 0.73. predicted error for the other tested molecules is smaller than
The descriptor off, applied in eq 17 defined the 1.0. The good predictions for the tested compounds confirms
flexibility of a molecule. The contributions of the descriptor the significance of the selected molecular descriptors and
to logPe demonstrate that high flexible molecule is favorable the model based on them.
to Caco-2 permeation. The results are reasonable. Compared It is informative to compare the predictive performance
with rigid molecules, flexible molecules are easier to adjust of reported lo@e+ models with models developed in this
its conformation when they penetrate the Caco-2 monolayers.paper, but now with this kind of comparison exists some
Equation 17 only includes four descriptors. Moreover, difficulties. Most of the earlier models were based on a
from the calculation of the correlation matrix of the relatively small set of molecules and were not fully validated
parameters, we found that all descriptors in eq 17 were by external prediction sets. For example, Palm et al. proposed
independent. Although introduction of other descriptors may the correlation between I8y,, and PSA based on six
improve the correlation, the addition of more descriptors may S-adrenoreceptor blocking ageffdJsing the same data set,
introduce more possibility of random correlation when the Segarra et al. developed a linear PLS model based on the
training set is limited. The molecular parameters and the GRID calculation$? Moreover, PLS regression of MolSurf
predicted Caco-2 permeability coefficients using eq 17 for descriptors was also used to model the dataset modeled by
the compounds in the training set are listed in Table 5. The Palm et al? Van de Waterbeemd et al. have developed a
linear relationships between experimental and predicted set of linear regression models based on 17 compotinds.
logPes values using eq 17 are depicted in Figure 6. In Table The QSAR models developed for 17 compounds had a
5, it can be found that there are two points (pirenzepin and correlation coefficient less than 0.89. Recently, Fujiwara and
terbutaline) with predicted error larger than 1.0. If these three co-workers constructed an equation using five molecular
compounds were considered as outliers and eliminated fromdescriptors from MO calculations. The authors found that a
the training set, the statistical parameters of eq 17 were feed-forward back-propagation neutral network was used to
improved effectively (see eq 18). improve the correlation. The best linear model proposed by
Certainly, lacking specific information to explain why Fujiwara et al. has a regression coefficient of 0:YFhe
these molecules behave as outliers, their exclusion from thedata set used by Fujiwara et al. includes 87 compounds,
model was not justified in the present study. Furthermore, which is much larger than those used by other researches.
the removal of these two compounds had no major effect We think that the model developed by Fujiwara et al. may
on the predictions made for test set. be more reliable than some other models, but the predictive
Model Validation. The calculated (0.78) shows that eq  ability of the Fujiwara’s model was not validated by external
18 is reliable. Certainly, the high value of LO®appears tested molecules.
to be the necessary but not the sufficient condition for the  Recently, Ponce et al. proposed several prediction models
models to have a good predictive power. Golbraikh et al. based on quadratic indic&sThe training set used by Ponce
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Table 7. Molecules Descriptors and Predicted Values ofAggfor CONCLUSION
Compounds in the Test Set

In the current work, based on a large set of drug or drug-

logP | : : .
_logPer (calc) like molecules linear correlation models were developed to

name '?g:e;f HCPSA lo® ravi New eq 18 ':noc?é:eells estimate Caco-2 permeability data. Four molecules descrip-
— P O royr New eq tors are crucial to Caco-2 permeation: experimental distribu-

Z?t?xur:ilrlml:an :Ség 128'23 _1(')62 4 4é2$ 4 06212;2'%‘23 tion coefficient, logD; high-charged polar surface areas based
Cyd?éporme —605 18148 231 655 0.21581 on Gasteiger partial charges, HCPSA,; the radius of gyration,
diltiazem —438 7352 222 4.15 0.19-4.84 —3.17 rgyr; and the fraction of rotatable bonds. These four
enalapril —5.64 91.59 —0.90 4.48 0.25-5.66 descriptors give meaningful physical picture of the molecular
g“JgﬁSEEﬂi :g'gg 1%"82’ _li2é7 3é7gl 0622171?1'% :g'gg mechanisms involved in Caco-2 permeation: a hydrophobic
coumarin  —4.11 2691 —1.39 2.95 0.00-531 —3.17 molecule can penetrate Caco-2 monolayers easier, but when
theophylline —4.35 61.59 —0.02 2.36 0.09—5.06 —4.65 the distribution coefficient is larger than 2.0, the influence
epinephrine —6.02  77.99 —2.59 2.76 0.27-547 -6.44 of hydrophobicity is not very significant; larger polar surface
guanoxan - o T B 0D, 28 ol oy oo areas have more negative contribution to Caco-2 permeability
tiacrilast —4.90 10057 —1.05 3.92 0.21-568 —3.89 values, but the contributions are only limited to those atoms
sulpiide  —6.16 110.95 —1.15 4.23 0.21-581 -7.76 with high-charge densities; larger and rigid molecules will
H'etig)r(‘g'cﬁ’r']“e :i-g 22-22 B 002-%7 33928 Ooi?f: g-gg :g-g; lead to worse Caco-2 cell penetration ability. The predictions
verapamil —458 6158 2.07 514 0.29-487 —3.17 to the external test set demonstrate that this model bears good
bosentan —-5.98 117.36 1.30 4.84 0.23-5.32 —6.03 performance and can be used for estimation of Caco-2
proscillaridin —6.20 116.19  2.48 5.69 0.12-5.42 -5.63 permeability for drug and drug-like molecules.
f:;t]ri:fi‘i‘é’r?e :g?g g(l)'gg _1'225’5 5;5266 obzglg'gg :g'gg Certainly, the models proposed in the current work are
saquinavir —6.26 130.93 3.00 558 0.26-5.39 —9.32 far from perfect, because the data set used here is limited.
mibefradil  —4.87 51.90 3.66 5.91 0.21:-5.06 —4.83 A sufficiently large set of experimental data relating to this
r 078  0.79 endpoint for the validation is crucial in the development of
UMEE® 049 115

the prediction models. So, based on increasing data, the

aPrediction using eq 18.Prediction using the Ponce’'s model. leam'ng/mc’de.“ng will need to be an ongoing, iterative
¢ UME represents unsigned mean error. process in which the models are continuously refined.
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