
Some Basic Data Structures and Algorithms for Chemical Generic Programming

Wei Zhang, Tingjun Hou, Xuebin Qiao, and Xiaojie Xu*

College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Received February 15, 2004

Here, we report a template library used for molecular operation, the Molecular Handling Template Library
(MHTL). The library includes some generic data structures and generic algorithms, and the two parts are
associated with each other by two concepts:PropertiesandMolecule. The conceptPropertiesdescribes the
interface to access objects’ properties, and the conceptMoleculedescribes the minimum requirement for a
molecular class. Data structures include seven models ofProperties, each using a different method to access
properties, and two models of molecular classes. Algorithms include molecular file manipulation subroutines,
SMARTS language interpreter and matcher functions, and molecular OpenGL rendering functions.

INTRODUCTION
Generic programming (GP)1 is a new programming

paradigm supported by the C++ programming language.
Programs using generic programming include generic data
structures (in the form of template classes) and generic
algorithms (in the form of template functions). Data struc-
tures and algorithms are associated with each other by
“concept”. A concept describes a set of requirements on a
data type, and when a specific data type satisfies all of these
requirements, we say that it is a “model” of that concept.
Actually, algorithms operate on models of its argument con-
cept, and data structures are written to be models of algo-
rithms’ argument concepts. This “concept” abstraction is the
essence of generic programming. GP is different from the
object-oriented (OO) paradigm,2 which involves associating
data types with a hierarchy of inheritance in many aspects.

Generic programming has achieved great progress in past
years. The STL (C++ Standard Template Library),3 as the
first commercial product of generic programming, was
accepted in 1994 as a part of the C++ standard.4 Many basic
components of C++ programming language, like string and
stream, have been rewritten using generic programming.

As for chemical software development, GP has been used
for the design of scientific computing programs,5-7 but there
is no library for generic programming that provides some
common functions. A template library, Molecular Handling
Template Library (MHTL, Figure 1), has been designed for
this requirement. It includes some generic data structures and
generic algorithms, and these two parts are coupled together
by two concepts:Propertiesand Molecule. The concept
Propertiesdescribes the interface to access objects’ proper-
ties, and the conceptMolecule describes the minimum
requirement for a molecular class. Data structures include
seven models of Properties, each using a different method
to access properties, and two models of molecular classes.
Algorithms include molecular file manipulation subroutines,
SMARTS language interpreter and matcher functions, and
molecular OpenGL rendering functions. The complete ver-
sion of MHTL consists of approximately 6000 lines of code
in C++ programming language. All calculations experiments
were carried out on a PC. The program has been tested on

IRIX, Linux, and Windows operating systems, and the source
codes can be obtained freely from the authors upon request.
The two parts of MHTL are discussed in the following two
sections, respectively.

DATA STRUCTURE
The data structure part of MHTL includes some classes,

which are mainly models of two concepts:Propertiesand
Molecule.

Concept Propertiesand Its Models. A common action
performed on a chemical object is to set and get its property.
The property can be the atom’s position and force, bond’s
order, molecule’s boiling point, and melting point. As it can
be seen, properties can be of any data type, even user-defined
types. This uncertainty in property type makes its access and
storage a difficult job, and in GP the solution to this type of
uncertainty is to set the type as template argument; thus we
require that models ofPropertieshave the following two
member functions:

These two functions can be used to access the property of
any type, but properties of the same type cannot be
distinguished, and it requires that users declare each property
a data type explicitly.

To help users define property types easily, we have defined
a template class PropertyT as follows:

* Corresponding author phone: (86)-10-62757456; fax: (86)-10-
62751708; e-mail: xiaojxu@chem.pku.edu.cn.

1571J. Chem. Inf. Comput. Sci.2004,44, 1571-1575

10.1021/ci049938s CCC: $27.50 © 2004 American Chemical Society
Published on Web 06/17/2004

PropertyT takes two template arguments: one is Pid,
which is the identification number of the property type, and
can be used to distinguish different properties; the other is
Ptype, the actual data type of the property. To ensure the
behavior of the derived type is the same as the actual type,
a copy constructor and a data type conversion function have
been included in the class. A static and const data member
named PropertyId has been defined inside the class, which
is used for the identification of property type. We defined a
trait for property to help users access PropertyId. The trait
follows:

Sometimes users need to declare their property type
without using PropertyT, and they may not be able to declare
PropertyId inside the data type; however, they can declare
PropertyId by specializing PropertyTraits such as this:

Type UDT is assigned a PropertyId of 10 in this way,
and users should take care of the uniqueness of PropertyId
by themselves.

Since the conceptPropertieshas been defined and the
property types have been declared, our problem is how to
realize these two member functions.

Traditionally, property is stored as a member variable
and accessed using the setter and getter function. This
method is very efficient, but in this way properties are
not accessed by a unified interface. The following code illus-
trates how this method can get access to the atom’s ele-
ment:

The technique of template specialization can be used to
improve the traditional method. Using this method, we can
realize a class that is the model ofPropertiesand stores
property as a member variable. The following code demon-
strates this technique:

Figure 1. The schematic representation of MHTL.

1572 J. Chem. Inf. Comput. Sci., Vol. 44, No. 5, 2004 ZHANG ET AL.

When we are using the template specialization method to
access property, we still need to define two member functions
for each property. This work can be simplified by using
template meta-programming.8

Template meta-programming is a compile-time language,
which means programs written in template meta-program-
ming run and get their results in compile-time. The MPL
module of the BOOST library is a product of template meta-
programming.9

The core component of MPL is type list. People can first
construct a type list and then perform many kinds of
operations on it, such as append, remove, find, and so on.
The tuple10 component of MPL is appropriate for use here,
which is generated by linear inheritance of tuple field. The
usage of tuple is like struct in C language, but it provides a
unified interface to access its member by type. The following
code illustrates the tuple method:

The last line declares a class that is equal to TsProperties
in usage.

The three property access techniques we discussed before
(traditional method, template specialization method, and tuple
method) are all under such an assumption that we known
the property will be accessed. If the type of property is
unknown, these three methods cannot be used, so we need
some property access mechanism that can convert property
of any type into a media and can convert it back whenever
we need.

Several methods can be used to establish such a mecha-
nism: first, we can use malloc() to allocate memory and
use free() to release memory. The property is stored as void
pointer, and the void pointer can be converted back to
property by static cast. The following code illustrates this
method:

Since the static method is not type safe, we need some
alternation. We can convert property into string by using
the “,” operator and can convert it back by using the “.”
operator. In the following code, we define a class String-
Properties and use this idea to access properties. The class
StringProperties has a very interesting feature, which supports
many kinds of conversion.

Table 1. The Comparison between Property Access Methods

property access method

compiler setting property name traditional template specialization tuple string dynamic

Level-3 optimized element 2 2 2 11 925 262
partial charge 3 4 4 16 762 272
atom name 745 1737 1310 14 617 1765
position 73 272 210 36 816 514

ALGORITHMS FOR CHEMICAL GENERIC PROGRAMMING J. Chem. Inf. Comput. Sci., Vol. 44, No. 5, 20041573

This string method is obviously slow, so we keep looking
for a faster method. We can use pointer’s dynamic cast,
which is a new feature of the C++ programming language.
To realize property in this method is difficult, but we do not
need to do it. The “any” module of the boost library has
realized it for us.9 The class DynamicProperties defined in
the following code illustrates how to construct a model of
Propertiesusing dynamic cast of pointer.

Until now, we have introduced six methods to access
property. These methods can be classified into two catego-
ries: direct method and indirect method. In these methods,
the static cast method is worst because it is not type safe,
and we do not recommend that users use this method. The
performances of the remaining five methods have been
compared. The comparison was done on four kinds of
properties: element (integer number), partial charge (floating
number), atom name (std string class), and position (Vector3d).
The compiler used here was GNU C++ compiler 3.2, and
the code was compiled under the optimization on Level 3.
The results are illustrated in Table 1. From Table 1, we have
found that: (1) the traditional way is the fastest in every
case; (2) for properties of basic types such asdoubleand
int, the tuple method and the template specification method
can be as efficient as the traditional method, but for properties
of complicated classes, these two methods are much slower
than the traditional method; and (3) the direct access methods
are much faster than the indirect methods.

Although the direct access method is much faster than the
indirect method, in some programs we still need to use the
indirect access methods. We note here that these two kinds
of methods could be combined together to form a data type
that uses the direct access method to some predefined
properties and uses the indirect access method to access other
properties. In the following code, we define such a template
MixedPropertiesT, which takes three arguments. The first

is typelist, which is a list of property types that should be
accessed using the direct access method; the second is
DirectProperties, the type name of direct access properties;

1574 J. Chem. Inf. Comput. Sci., Vol. 44, No. 5, 2004 ZHANG ET AL.

the last one is IndirectProperties, the type name of the direct
access properties. In the realization of MixedPropertiesT, we
used the meta-functionfind to find out if a specified type is
in a type list, which is imported from the boost’s mpl module.

Concept Molecule and Its Models. Molecule is the
common object that chemical algorithms may operate on.
Generally, a molecule contains several atoms, and atoms are
associated with each other by bonds; meanwhile, molecule,
atoms, and bonds have their own properties. Moreover,
molecules can be classified into monomers and polymers,
and a polymer is normally made up of several residues.

In MHTL, the Moleculeconcept requires data types to
realize the following member functions:

As for the realization of molecule data type, many methods
can be used. In these methods, adjacent list and adjacent
matrix are mostly used. The adjacent list method involves
saving bond associations in a bond list, while the adjacent
matrix method involves saving them in a 2-D matrix. The
two methods both have their advantages and disadvantages.
The adjacent list method is quick in counting the bond
number, and getting the bond’s atom, while the adjacent
matrix method is quick in getting the bond of atoms.

ALGORITHM

Algorithms in MHTL include the following:
(1) Molecule input and output subroutines using different

file formats, which are all template functions and take
Moleculeas their argument concept. We are now providing
the manipulation for files in MDL MOL,11 PDB,12 Daylight
SMILES,13 and Sybyl Mol214 format.

(2) SMARTS13 language interpreter and matcher functions.
SMARTS language is a pattern language designed for the
description and matching of chemical environments and has
been employed by many chemical softwares. SMARTS
libraries that can be obtained are mostly C++ class libraries,
so we wrote a SMARTS module using GP.

(3) Molecule 3d-rendering subroutines using OpenGL
library. Molecular 3d-rendering using OpenGL15 is necessary
for GUI of most chemical softwares, and we provide a
module in MHTL that helps chemists realize this function
easier.

CONCLUSION

Generic programming is a kind of useful programming
paradigm supported by many programming languages, while
its usage in computational chemistry is limited. We have
tried to import it into chemical software development. We
defined two commonly used concepts and defined many
models of these concepts on the basis of different policies,
and we wrote many algorithms operating on the concept.
These algorithms have three basic functionalities: molecular
file input and output in different file formats, atom pattern
recognition using SMARTS language, and molecular 3D-
rendering using OpenGL. We hope these algorithms can help
chemists build their software easier and more quickly.

ACKNOWLEDGMENT

This project is supported by the National Natural Science
Foundation of China (NSFC 29992590-2 and 29873003).

REFERENCES AND NOTES

(1) Austern, M. H.Generic Programming and the STL, 1st ed.; Addison-
Wesley Pub. Co.: New York, Oct. 1998.

(2) Booch, G.Object-Oriented Analysis and Design with Applications,
2nd ed.; Addison-Wesley Pub. Co.: New York, Oct. 1993.

(3) Stepanov, A.; Lee, M.The Standard Template Library; Hewlett-
Packard Laboratories, 1994.

(4) ISO/IEC 14882.Programming Languages-C++, 1st ed.; ISO/IEC,
Sept. 1998.

(5) Gerlach, J.; Kneis, J. Generic Programming For Scientific Computing
in C++, Java (TM), and C#, Advanced Parallel Processing Technolo-
gies, Proceedings.Lect. Notes Comput. Sci.2003, 2834, 301-310.

(6) Kettner, L. Using Generic Programming For Designing A Data
Structure For Polyhedral Surfaces.Computational Geometry-Theory
And Application; Elsevier: New York, 1999; Vol. 13, pp 65-90.

(7) Trobec, R.; Sterk, M.; Praprotnik, M.; Janezic, D. Parallel Programming
Library For Molecular Dynamics Simulations.Int. J. Quantum Chem.
2004, 96, 530-536.

(8) Alexandrescu, A.Modern C++ Design, 1st ed.; Addison-Wesley Pub.
Co.: New York, Feb. 2001.

(9) Gurtovoy, A.; Abrahams, D.The BOOST C++ Meta Programming
Library; http://www.mywikinet.com/mpl/paper/mpl_paper.pdf.

(10) Jarvi, J. Tuple Types and Multiple Return Values.C/C++ Users
Journal; 2001; Vol. 12, 2nd paper.

(11) CTFile Format; MDL Co., Aug. 2002; http://www.mdli.com.
(12) PDB Format Description Version 2.2; The Research Collaboratory

for Structural Bioinformatics(RCSB), Dec. 1996; http://www.rcsb.org/
pdb/docs/format/pdbguide2.2/guide2.2 frame.html.

(13) James, C. A.; Weininger, D.; Delany, J.Daylight Theory Manual;
Daylight Chemical Information Systems Inc., Jun. 2003; http://
www.daylight.com/release/manuals.html.

(14) Tripos Mol2 File Format; Tripos Inc.; http://www.tripos.com/custRe-
sources/mol2Files/index.html.

(15) Segal, M.; Akeley, K.The OpenGL Graphic System: A Specification
(Version 1.5); Silicon Graphic, Inc., 2003; http://www.opengl.org/
documentation/specs/version1.5/glspec15.pdf.

CI049938S

ALGORITHMS FOR CHEMICAL GENERIC PROGRAMMING J. Chem. Inf. Comput. Sci., Vol. 44, No. 5, 20041575

