
New Born Radii Deriving Method for Generalized Born Model

Wei Zhang, Tingjun Hou, and Xiaojie Xu*

College of Chemistry and Molecule Engineering, Peking University, Beijing 100871, P. R. China

Received August 23, 2004

Here we report a method to calculate Born radii, an important parameter used in a Generalized Born model.
Traditional methods to derive Born radii are mostly based on a complicated formula, while our method is
easier and more direct. Atoms are classified according to their atom type, and the Born radii of each type
are obtained by fitting to experimental solvation free energy. The SMARTS language is used for the exact
definition of atoms types, and Ullmann’s subgraph isomorphism algorithm is used to deduce the environment.
A generic algorithm is used for the parameter fitting because of its efficiency in searching a huge phase
space, and its results are then optimized by using the conjugate gradient method. The final parameter set is
fitting from a training set containing 357 molecules and is tested using a test set of 44 small organic molecules,
and the average error is 0.58 kcal/mol for 36 neutral molecules and is 1.67 kcal/mol for 8 ions. The model
is further tested under organic molecules, biopolymers, and a protein-inhibitor complex and yields reliable
results in all these cases. This method can be used to accelerate molecular docking calculations.

INTRODUCTION

The rapid and accurate modeling of solvation is crucial
to quantitatively understand the chemical and physical
property of many biochemical processes. To solve this
problem, both molecules1-3 and continuum models4-10 of the
solvent have been developed. Explicit solvent models can
reproduce many properties of the solutions, but such calcula-
tions converge very slowly because of the large number of
particles involved; on the other hand, continuum medium
models treat the solvent as a continuous medium surrounding
the solute, thus they demand much less computational
resources in principle.

Some continuum medium models treat solvation effects
in two parts: electrostatic portion and vdw portion. The vdw
portion is usually evaluated using surface area (SA) related
methods, and in the simulation of biopolymers the electro-
static portion is usually treated using Poisson-Boltzmann
(PB) equation based methods.

In the past few years the Generalized Born (GB) model
has gotten more and more attention as a potienal model to
predict the electrostatic portion,9 which can be thought of
as an approximate solution to the PB equation. The GB
model uses the following equations for the electrostatic
portion of solvation free energy

whereRi andRj are the effective Born radii of atomi and
atom j, respectively. In its original form, it is calculated by
using an integral method, as the following equation:

In formula 3 ri is atom’s vdw radii, andr is the distance.
The integral method for Born radii is too time-consuming
to be used in the simulation of biopolymers. Therefore, many
efforts have been tried to derive Born radii analytically11-13

by simplifying formula 3 with some empirical parameters,
and many of these parameters have been reported.14-17

However, we have a different idea. From formula 3, we can
find out that the integral factor fordV is r-4, which means
that only an atom’s near neighborhood atom, usually called
its atom type, can influence its Born radii. Theoretically an
atom’s near atom can have many combinations, but in
practice the number of combinations is very limited because
of a lot of chemical limitations. Since an atom’s Born radii
rely only on its atom type, we assume that atoms of the same
type should have the same Born radii. On this assumption,
we can predetermine each chemical environment a Born radii
by fitting to the experimental solvation free energy, and in
GB calculations we can assign this predetermined value to
be atoms’ Born radii according to their types.

The idea used here is not new. Most GB models employ
constant terms for the pairwise descreening of close (bonded
and 1-3) neigbors, like the method of Hawkins et al.,11 the
ACE model of Schaefer and Karplus,12 or the method of Qiu
et al.,13 it can be thought of as a simplification of the earlier
models.

Technically there are two problems that need to be taken
care of to realize this method: one to find a proper
mechanism for the definition of atom type, the other is to
find a method to determine whether an atom is in a specified
environment, which is in fact a subgraph isomorphism
problem. For the description of atom type the SMARTS
language is used because of its simplicity and convenience.
As for the determination of atom type, we use Ullmann’s
algorithm,18 which is a standard solution to this problem.* Corresponding author e-mail: xiaojxu@chem.pku.edu.cn.
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The related code has been included in MHTL (Molecular
Handling Template Library),19 a library developed in our lab,
and can be obtained upon request.

METHODOLOGY

401 molecules whose experimental solvation energies are
available were used in the fitting of parameters. The whole
data set was divided into a training set of 357 molecules
and a test set with 44 molecules; 30 molecules in the training
set and 8 ones in the test set are ions. The energy-lowest
conformer for each molecule was identified using a system-
atic search, which is done with the CeriusII software package
distributed by Accelrys, Inc. The derived conformation was
then minimized using the HF method under the basic set of
6-31G*. Atom’s ESP charge was derived under the same
basic set. The optimization and ESP work are done using
Gaussian98.20

The GB/SA method is used to evaluate the solvation free
energy of each molecule, the GB part is as described above,
and the SA part for the vdw interaction is measured as the
solvent accessible surface area (SASA)21 with the surface
tension being 0.005 kcal‚mol-1‚A-2.

The aim of the parameter fitting procedure is to find out
a set of parameters that can predict solvation free energy
most accurately. A two stage fitting strategy is employed
here for the best results. In the first stage, the genetic
algorithm (GA) has been used since its efficiency in
searching a huge phase space, and then a conjugate gradient
method has been used to optimize the results of a generic
algorithm, since GA sometimes fails in finding a local
minimum, which is the best part of a conjugate gradient
method. The reason for its rare usage in parameter fitting
work is because it requires the object function being a
differentiable function of parameters. Fortunately, our method
qualifies for this demand. This two stage fitting procedure
(first GA, then CG) ensures the resulting parameters to be a

global minimum. The results also testify it, the fitting
procedure has been repeated three times, each time GA gives
different results, but after conjugate gradient optimization,
the parameters turn out to be similar to each other.

Lots of atom types and their combinations were tried for
the accurate evaluation of solvation free energy. The pattern
set we finally use is made up of 27 patterns, and seven of
them are designed for charged molecules. Patterns’ defini-
tions and their parameters are listed in Table 1. Atom type’s
appearance frequencies are also included for a reference.

In this work, the PB/SA22 model is used to simulate
solvation of some systems for a comparison with our method.
In the PB/SA model, the electrostatic contribution to the
solvation free energy are obtained by taking the difference
between the total energy of the system obtained withεint)2;
εext)1 and εint)2; εext)78.5. The PB calculation is
performed using DelphiII, and van der Waals radii of atoms
is taken from the PARSE parameter set.23

RESULTS AND DISCUSSION

The resulting model can predict the solvation free energy
of the neutral molecules in the training set with a mean
unsigned error of 0.63 kcal/mol (Table 1 in Supporting
Information) and predict the charged molecules with a mean
unsigned error of 1.60 kcal/mol (Table 2 in Supporting
Information). The error for the 36 neutral molecules in the
test set is 0.58 kcal/mol and is 1.79 kcal/mol for the left 8
ions (Table 2). We calculated the error for the neutral
molecules and for the charged molecules individually since
the solvation free energies of charged molecules are an
average of 10 times larger than those of the neutral ones.
The plots of the results are illustrated in Figure 1a,b. We
have also calculated their solvation energy using the PB/SA
model and Jayaram’s GB parameters. The results of these
two methods for small organic molecules are significantly
worse than those using our method (Table 2). It is not

Table 1. Atom Patterns and Their Parameters

name SMARTS description occurrence Born radii (Å)

H.c [#1][#6] hydrogen connected to carbon 2973 1.95
H.p [#1][n,N,O,S] hydrogen connected to polar atoms 109 1.27
C [#6] other carbon atoms 1109 2.68
C.o [#6])O carbon double bonded to oxygen 33 2.10
C.ar [c] aromatic carbon atoms 552 2.13
C.n [C∧3][n,N] Sp3 carbon single bonded to nitrogen 85 2.08
C.oo [#6](dO)O carbon in a carboxyl 31 2.10
C.on [#6](dO)N carbon in amide 6 3.07
N.1 [#7∧1] Sp1 nitrogen 6 2.16
N.2 [#7∧2] Sp2 nitrogen 16 2.03
N.3 [#7∧3] Sp3 nitrogen 26 1.81
N.oo [#7](O)dO nitrogen in nitryl 6 2.66
N.ar [n] aromatic nitrogen 33 1.90
O.2 [#8∧2] Sp2 oxygen 133 2.14
O.3 [#8∧3] Sp3 oxygen 65 1.81
F [#9] fluorine 85 1.57
P [#15] phosphor 7 3.00
S [#16] sulfur 25 2.23
Cl [#17] chlorine 114 2.42
Br [#35] bromine 33 2.27
N.3+ [#7∧3+] Sp3 charged nitrogen 12 1.51
N.2+ [#7∧2+] Sp2 charged nitrogen 10 2.21
O.3- [#8∧3-] Sp3 charged oxygen 3 1.60
O.2- [#8∧2-] or OdC[O-] oxygen in a charged carboxyl 6 1.74
S- [#16-] charged sulfur 3 2.04
H.n3+ [#1][#7∧3+] hydrogen connected to N3+ 28 1.44
H.n2+ [#1][#7∧2+] hydrogen connected to N2+ 6 1.55
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surprisingly because these methods are designed for the
simulation of biopolymers and cannot ensure an accurate
estimation of small organic molecules. As it can be seen,
Jayaram’s parameter is obtained using a relative small
training set (36 molecules) obviously designed for the
representation of protein.14

In Table 1, the radii for chlorine and bromine are 2.42 and
2.27, respectively. It is abnormal because the radius for chlo-
rine is supposed to be smaller than that of bromine. In the
test set, there are 100 molecules which have chlorines and
bromines in them, and most of these molecules have long hy-
drophobic chains. Solvation free energies of such molecules

Figure 1. Experimental solvation energies of small molecules versus predicted value.

Table 2. Solvation Free Energies of Molecules in Test Set (kcal/mol)

no. name ∆Gexp ∆Gcalc(our model) ∆Gcalc(PB/SA) ∆Gcalc(Jayaram’ model)

A1 n-pentane 2.33 1.32 1.13 1.67
A2 n-heptane 2.62 1.61 1.29 1.96
A3 4-methyl-1-pentene 1.91 1.85 -1.01 -0.19
A4 1,4-pentadiene 0.94 1.24 -2.46 -1.29
A5 butenyne 0.04 0.03 -4.01 -3.13
A6 butylbenzene -0.40 -1.36 -2.16 0.67
A7 1,1-difluoroethane -0.11 -2.48 -2.92 -0.59
A8 dichlorinedifluromethane 1.69 1.01 1.14 1.68
A9 1-bromine-1,2,2,2-tetrafluoroethane 0.52 -1.40 -0.86 2.88
A10 1,1,1,2-tetrachlorineethane -1.15 -0.53 -1.53 1.39
A11 1,1-dichlorinebutane -0.70 -0.50 -1.47 0.84
A12 chlorinebenzene -1.01 -0.96 -2.17 0.36
A13 1-chlorine-2-bromineethane -1.95 -0.80 -2.81 0.28
A14 1-bromine-2-methylpropane -0.03 -0.01 -1.61 0.17
A15 o-brominecumene -0.85 -1.54 -2.03 0.51
A16 1-butanol -4.72 -4.74 -4.12 -1.97
A17 2-methyl-1-pentanol -3.93 -3.81 -3.79 -1.51
A18 1-heptanol -4.25 -4.33 -3.79 -1.42
A19 3-cresol -5.49 -5.66 -7.02 -3.04
A20 ethyl propyl ether -1.81 -2.15 -0.89 1.25
A21 1,2-diethoxyethane -3.53 -3.84 -2.16 1.46
A22 pentanal -3.03 -2.84 -4.26 -3.16
A23 m-hydroxybenzaldehyde -9.51 -7.91 -10.22 -5.51
A24 cyclopentanone -4.68 -3.68 -4.76 -2.98
A25 propionic acid -6.46 -6.56 -8.11 -4.80
A26 isobutyl formate -2.22 -2.80 -5.24 -1.68
A27 methyl propionate -2.97 -2.75 -4.93 -1.54
A28 methyl hexanonate -2.48 -2.32 -4.58 -0.84
A29 dimethylamine -4.28 -4.36 -1.98 -0.36
A30 aniline -5.49 -5.53 -7.69 -2.31
A31 pyrrolidine -5.47 -3.73 -1.24 0.84
A32 2,4-dimethylpyridine -4.85 -5.23 -4.33 -1.44
A33 2-ethyl-3-methoypyrazine -4.39 -4.28 -3.48 -0.10
A34 N′ N-dimethyl formamide -4.90 -4.22 -6.81 -4.45
A35 thioanisole -2.73 -2.01 -3.20 -0.51
A36 tripropyl phosphate -6.10 -7.18 -8.58 -3.14

mean unsigned error 0.58 0.73 1.56

Charged Molecules
A37 (cyclo-C6H11)NH3

+ -62.00 -59.32 -66.08 -42.55
A38 (CH3)(C6H5)NH2

+ -56.50 -59.25 -62.38 -40.48
A39 C5H5NH+c -53.50 -57.01 -64.08 -46.55
A40 (CH3)2(n-C3H7)NH+ -59.00 -55.56 -58.67 -35.84
A41 (n-C3H7) H5N3C+d -65.50 -65.43 -63.21 -34.23
A42 (i-C3H7) H5N3C+d -63.00 -61.71 -63.64 -30.95
A43 C6H5CO2

- -73.50 -73.08 -68.42 -62.06
A44 (n-C3H7)S- -79.00 -79.18 -78.81 -71.71

mean unsigned error 0.00 1.79 3.65 3.63
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are always underestimated since they tend to aggregate to-
gether in an aqueous phase. According to eqs 1 and 2, we can
imagine the radii for chlorine and bromine are both overesti-
mated, and the radii for chlorine is overestimated more badly,
because molecules with chlorine in them are much more than
molecules with bromine in them, that is why the radii for
chlorine is bigger than that for bromine. It can also explain
the poor prediction for 1,1-difluoroethane (-0.11 vs-2.48)
and 1-bromine-1,2,2,2-tetrafluoroethane (0.52 vs-1.40) in
the test set. These two molecules do not have a hydrophobic
chain in them, while we still use an overestimated radii for
fluorine and bromine to predict their solvation free energies.
Since there are numbers of halogen atoms in the molecules,
we can imagine the predicted solvation free energies for them
will be greatly underestimated as well as the predicted value.

To further test our method, we have chosen six compli-
cated molecules and calculated their GB energies using our
method and their PB energies for a reference. We found the
results of the two methods fit each other quite well, as shown
in Table 3.

Since the GB model is mainly used in the simulations of
biopolymer, we have tried our method on protein related
systems. The solvation effects of these systems are hard to
determine through an experimental method, so in the
following cases we always use PB results as standard to test
our model.

First we test our method on different proteins. Eight
structures have been picked out from the Brookhaven Protein
Data Bank (PDB), and their solvation energies were predi-
cated using both the PB method and the GB method (Table

Table 3. Solvation Free Energies of Six Complicate Organic Molecules (kcal/mol)

NEW BORN RADII DERIVING METHOD J. Chem. Inf. Model., Vol. 45, No. 1, 200591



4). It turns out that there is a good linear relation between
the results of the two methods, as shown in Figure 2a.

Then we tested our method on the prediction of confor-
mational energy of protein. We recode 9 conformations of
the PDB entry 1ctf during its unfolding procedure and
calculate each conformation’s GB and PB energy (Table 5).
There is also shown a good linear relation between our GB
energy and PB energy, as illustrated in Figure 2b.

Last we tested this method for the prediction of the relative
binding energy of protein-inhibitor. We take the lysozyme/
4-methyl umbelliferyl chitobiose complex (PDB entry 1bb7)

as an example. We selected five conformations of the
inhibitor in the binding pocket and predicted the GB and
PB interaction energy between the inhibitor and the receptor
(Table 6). The absolute value of solvation given by the two
methods is different, but the two methods give the same
sequence of the five conformations, and the results of the
two methods show a good linear relationship with each other,
as shown in Figure 2c.

According to Tables 4 and 5, the GB predicted energies
are usually smaller than the PB ones. We believe it is because
the Born radii of buried atoms are underestimated in our
method. The fixed Born radii during the simulation may
induce to the underestimation of charge-solvation forces:
charged groups may shift toward the protein interior, as the
self-energy of a single charge would not increase if it moved
toward the interior regions, according to Onufriev et al.24

Therefore, the usage of this method in MD simulation or
protein folding is rather limited, but because of its simplicity
and fast we expect it can be used in molecular docking. A
recent test shows that our GB method is about 1 times faster
than the GB model of Hawkins et al.,12 when the partial
charge is given. It should be emphasized that though 6-31G*
charges are used here in this work, our method itself is charge
independent; later we will derive different parameters for a

Figure 2. PB solvation free energies versus GB values: (a) different proteins, (b) different conformation of one protein, and (c) interaction
energy between protein and inhibitor.

Table 4. GB Energy and PB Energy of 8 Proteins (kcal/mol)

PDB Id PB GB

1ayp -3369.0 -4051.6
1bb7 -1349.9 -1919.6
1c3i -7699.9 -10825.8
1cbx -2633.3 -4312.9
1fkd -1330.0 -1708.1
1bbs -4488.8 -6630.9
1gky -2628.0 -3372.1
1ctf -1555.6 -1242.7

Table 5. GB Energy and PB Energy of 9 Conformations of 1ctf
(kcal/mol)

Id PB GB

1 -1242.7 -1555.6
2 -1352.1 -1731.5
3 -1363.5 -1732.6
4 -1675.1 -2033.1
5 -1711.0 -1951.5
6 -1813.7 -2018.6
7 -1959.1 -2174.1
8 -2159.4 -2247.1
9 -2158.5 -2240.1

Table 6. GB and PB Interaction Energy between Lysozyme and
4-Methyl Umbelliferyl Chitobiose (kcal/mol)

Id PB GB

1 -240.1 -127.5
2 -74.3 -0.7
3 -104.9 -36.7
4 -41.2 1.4
5 -14.6 26.9
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different charge deriving method to ensure good docking
results.

In this work, all the calculations were performed on a
2-CPU SGI Octane workstation. The molecule database and
programs used in this work can be obtained upon request
from the authors. We are now providing a patch to the
AMBER source code to help AMBER users employ our
method in their simulations.
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