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Determination of the binding motif and identification of interaction
partners of the modular domains such as SH2 domains can enhance our
understanding of the regulatory mechanism of protein–protein inter-
actions. We propose here a new computational method to achieve this goal
by integrating the orthogonal information obtained from binding free
energy estimation and peptide sequence analysis. We performed a proof-
of-concept study on the SH2 domains of SAP and Grb2 proteins. The
method involves the following steps: (1) estimating the binding free energy
of a set of randomly selected peptides along with a sample of known
binders; (2) clustering all these peptides using sequence and energy
characteristics; (3) extracting a sequence motif, which is represented by a
hidden Markov model (HMM), from the cluster of peptides containing the
sample of known binders; and (4) scanning the human proteome to identify
binding sites of the domain. The binding motifs of the SAP and Grb2 SH2
domains derived by the method agree well with those determined through
experimental studies. Using the derived binding motifs, we have predicted
new possible interaction partners for the Grb2 and SAP SH2 domains as
well as possible interaction sites for interaction partners already known.
We also suggested novel roles for the proteins by reviewing their top
interaction candidates.
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Introduction

The Src homology 2 (SH2) domain functions as a
protein-binding module that is used in the control
of cellular signal transduction.1–3 It can serve as
an adapter molecule that coordinates the assembly
of intracellular signaling proteins in response to
an extracellular signal.2,4–6 Signals mediated by SH2
domains ultimately lead to alterations of the cellular
processes such as growth, differentiation, and meta-
bolism.7 Malfunctions in SH2 domains can lead to a
host of human diseases.8

Two examples of the SH2 domains are found in
the Grb2 and the SLAM-associated proteins (SAP).
The Grb2 protein is composed of an SH2 domain
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and two flanking SH3 domains.9 A primary
function of the Grb2 protein is to bind to protein
receptors at the cell surface via its SH2 domain and
to bind to the SOS protein through its SH3 domains,
thereby coupling SOS protein to the membrane
where it can activate the Ras protein to initiate
a kinase signaling cascade that ultimately leads
to modifications in transcription (reviewed by
Schlessinger).10 The SAP protein consists solely of
the SH2 domain and is a regulator of signaling
events induced by members of the SLAM-related
protein receptors found on the surface of T and NK
cells.11–14

A common feature of all SH2 domains is that
binding to an interaction partner is regulated, in
part, by the phosphorylation state of a tyrosine
residue within that partner.7 While phosphoryl-
ation is required for binding for most SH2
domains,15 there are SH2 domains that bind to
their partners in the absence of phosphorylation,
albeit with lower affinity.3,11,16 Using the method of
d.



Prediction of Binding Sites for SH2 Domains 1323
peptide library screening (finding the sequence
binding preference based on affinity measurements
of oriented degenerate set of random peptide
sequences), it has been demonstrated that the
sequence determinants of binding or binding
specificity of an SH2 domain depend partly on the
sequences flanking the tyrosine phosphorylation
site.17,18 For the majority of SH2 domains charac-
terized to date, that specificity is dictated by
residues C-terminal to the phosphorylation site,
but in some cases, such as the SAP SH2 and the
EAT2 SH2 domain, amino acid residues at positions
C and N-terminal to the phosphorylation site have
been demonstrated to play a role in binding.19,20

Peptide library screening has been applied to a
number of SH2 domains and there has been
accumulation of binding sequence motifs corres-
ponding to each of the domains that have been
studied. Many of these binding motifs have been
compiled into a web resource called SCANSITE.21,22

A searching script at that website can be used to
predict interaction partners of particular protein
domains and thus provides a starting point for
identifying candidate interaction partners. Since
SCANSITE searching can be conducted only for
those domains that have been experimentally
characterized, and the strong binding peptides
present in the random library but not in the
human genome may bias the binding motif
determined by the peptide library experiment,
alternative techniques are currently needed.

With the aim of addressing these limitations, we
have developed a computational method for
identifying binding candidates of the modular
domains and applied it to the SH2 domains in the
proteins of Grb2 and SAP. The method does not rely
on peptide library experiments and combines
information obtained from binding affinity esti-
mation and sequence motif preference, which is
different from the previous approaches using only
either type of the information.22,23 We first created
three-dimensional models of known binding pep-
tides as well as randomly selected peptides from the
human proteome in complex with the SH2 domain.
We next estimated their binding free energies
using the molecular mechanics/Poisson–Boltz-
mann solvent-accessible surface area (MM/PBSA)
method.24,25 These peptides were then clustered
based on the binding energy and sequence charac-
teristics and a binding motif was extracted from the
cluster of peptides containing those known to
interact. The resulting motifs were represented by
hidden Markov models (HMMs)26 and utilized to
scan a representative set of human protein
sequences in the SWISS-PROT database for likely
interaction partners,27 among which experimental
documentation for an interaction with the associ-
ated SH2 domain was identified. Possible sites of
interaction with the associated SH2 domain were
also identified for each interaction candidate. More-
over, based on a literature review of the candidate
proteins, new biological roles for the SAP and Grb2
SH2 domains were inferred.
Results
Energy measurements separate known
binders from random peptides

The known binding peptides should, on average,
have more negative or more favorable binding free
energies than peptides selected at random from the
background. Two energy measurement protocols
were examined with respect to how well the known
binding peptides could be separated from the
background set of peptides using MM/PBSA. One
protocol had the peptides in a phosphorylated state
while the other had the peptides in an unphos-
phorylated state. Student’s t-test was used to
evaluate the significance of the difference between
the means.
For peptides in the phosphorylated state, the

p-value associated with the difference in the mean
binding energies of the 15 known peptide binders
versus the 1400 randomly selected peptides in the
Grb2 SH2 domain dataset was 6.41!10K5. For the
peptides in the unphosphorylated state, the p-value
associated with the separation of the two means
was lower at 2.31!10K9, which indicated a better
separation. Similarly, the p-value associated with
the separation of the mean binding energy for 11
known binders and the 1799 other peptides in the
SAP SH2 domain dataset was lower for the unpho-
sphorylated peptides (7.37!10K6) than for the
phosphorylated peptides (3.48!10K5). Figure 1
illustrates the separation between the known
binders and peptide candidates in an unpho-
sphorylated state by a histogram plot.
To predict binding motifs and interacting part-

ners of SH2 domains, we chose to use unphos-
phorylated peptides for the following reasons. First,
in our method, rather than to calculate the binding
free energy for each binding or non-binding peptide
accurately, we only need to establish two distinctive
distributions for binders and non-binders. We
assume that excluding phosphate does not distort
these two distributions, which seems reasonable
based on the comparison between the distributions
of energy calculations using phosphorylated and
unphosphorylated peptides. Second, the binding
energy contribution by the phosphate moiety was
similar for the known binding peptides and the
background set of peptides, and there was a
relatively high error associated with its calculation.
The binding energy contributed by the phosphate
moiety was estimated by subtracting the binding
energy of the phosphorylated peptides from the
binding energy of the unphosphorylated peptides.
For the known binding peptide the average energy
contribution due to phosphate binding was 64.78
(G13.01) kcal/mol for Grb2 and 75.28(G8.83) kcal/
mol for SAP. For the background set of peptides, the
average energy contribution due to phosphate was
estimated to be 71.41(G17.80) kcal/mol for Grb2
and 75.77(G24.34) kcal/mol for SAP. Therefore, the
average contribution of phosphate to binding and



Figure 1. Histogram plot of the calculated binding free
energy of known binding peptides and candidate
peptides. (a) The energies for the 11 known binders
(black) and 100 peptides picked at random from binding
candidates in the SAP SH2 domain dataset (white).
(b) A similar plot for the Grb2 SH2 domain, with 15
known binders and 100 peptides picked at random from
the rest of the dataset.

Table 1. Unsupervised clustering of peptides in the Grb2
and SAP SH2 domain datasets

Cluster
number Candidates

Known
binders

Average energy
(kcal/mol)

A. Sequence and energy
SAP SH2 domain
1 442 1 K35.48G4.30
2 166 0 K5.25G11.64
3 401 0 K21.44G5.17
4 433 0 K30.39G4.01
5 300 10 K44.55G5.33
6 57 0 27.50G368.71

Grb2 SH2 domain
1 357 1 4.13G3.61
2 13 0 302.15G184.96
3 262 0 13.82G6.03
4 118 14 K16.86G6.31
5 425 0 K4.24G3.44
6 225 0 30.99G8.83

B. Sequence only
SAP SH2 domain
1 134 0 N/A
2 1665 11 N/A

Grb2 SH2 domain
1 1400 15 N/A

C. Energy only
SAP SH2 domain
1 123 0 K5.9754G12.9621
2 5 0 802.8107G719.68
3 771 0 K26.1573G7.3608
4 899 11 K36.9477G7.81
5 1 0 K1215.96G66.0503

Grb2 SH2 domain
1 509 14 1.6075G13.2933
2 13 0 285.1342G192.0195
3 218 0 29.3596G10.1252
4 660 1 0.2332G6.4038

Clustering was done by combining sequence and energy (A),
using sequence only (B), and energy only (C). Clustering done
using sequence and energy together produced the highest
overlap of the known binders in a given cluster for both datasets.
For the SAP domain dataset, there were six clusters generated
using sequence and energy. The fifth cluster contained the
majority of the known binding peptides and was assigned as the
binding cluster. The mean and standard deviation of the binding
cluster wasK44.55 kcal/mol and 5.33 kcal/mol, respectively. For
the Grb2 dataset, there were six clusters generated using both
sequence and energy. Cluster four was assigned as the binding
cluster and had a mean and standard deviation of the energy
estimate of K16.86 kcal/mol and 6.31 kcal/mol, respectively.
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non-binding peptides has about 10% difference for
Grb2 and almost the same for SAP with a larger
variance for phosphorylated peptides. Considering
that the average difference between the known
binding and the background set for the unpho-
sphorylated peptides was 29.92 kcal/mol for Grb2
and 20.23 kcal/mol for SAP, we concluded that the
contribution to binding by the phosphate moiety
partly obscured the difference between the known
binding peptides and the background set that was
contributed by the flanking sequences.

By removing the phosphate contribution to
binding and therefore reducing the associated
noise, focus was placed on the discriminative
contribution to binding by the amino acid residues
flanking the conserved tyrosine site. A similar
strategy was employed by Schueler-Furman et al.
when computing the free energy of binding
between a peptide and major histocompatibilty
complex (MHC): contacts that were present in both
the binding and non-binding peptides, i.e. the
protein–peptide backbone contacts, were removed
to improve the performance of discrimination
between the binding and non-binding peptides.28

Binding motifs derived from the binding clusters
were consistent with the experimental results

Peptides were clustered in an unsupervised
manner using three schemes as described in
Methods: (1) using binding energy only; (2) using
sequence only; and (3) using sequence and binding
energy together (Table 1).

For the SAP domain dataset, there were two
clusters generated using sequence only, five clusters
generated using energy only, and six clusters



Figure 2. Reconstruction of the experimentally derived
binding motifs for the Grb2 and SAP SH2 domains. The
SAP SH2 domain binding motifs are shown in (a) while
(b) shows the Grb2 binding motifs. The motifs on the top
of each panel were taken from the literature. The rest of
the motifs were constructed by finding the amino acid
preference using the majority rule at each position of the
corresponding HMM. The motifs in the middle of each
panel correspond to HMMs generated using only the
sequences of the known binding sequences. The motifs at
the bottom left are from HMMs created using sequences
of the binding cluster, which can be viewed as a set of
sequences created by adding peptide sequences of the
binding cluster to the known binding sequences. The
motifs at the bottom right are from HMMs generated
using sequences of the control cluster, which can be
viewed as a set of sequences created by adding peptides
from the non-binding cluster to the known binding
sequences. Note the similarity between the experimen-
tally derived motifs and the motifs derived from the
binding cluster sequences. One letter codes follow the
IUPAC convention except for the Greek letter F, which
represents a hydrophobic residue.59 Insertion points are
represented as dots.
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generated using both sequence and energy. Simi-
larly, for the Grb2 domain dataset there was one
cluster generated using sequence alone, four
generated using energy alone, and six generated
using sequence and energy together. The clustering
schemes were evaluated in terms of the overlap
score with the known binders, calculated by
multiplying the fraction of the known binders
relative to the total number of peptides in the
cluster. Based on the overlap score, the best
clustering scheme for both datasets was achieved
by using both sequence and energy.

Using the sequence-energy clustering scheme for
the SAP dataset (Table 1), cluster five had the
highest overlap score and was assigned as the
binding cluster while all other clusters were
collectively labeled as non-binding. The binding
cluster had an average and standard deviation of
the energy estimate of K44.55 kcal/mol and
5.33 kcal/mol, respectively. For the Grb2 dataset,
using the sequence-energy clustering scheme the
fourth cluster was assigned as the binding cluster.
The mean and standard deviation of the energy
estimate for the binding cluster was K16.86 kcal/
mol and 6.31 kcal/mol, respectively. Since the
conformational entropy was not included, these
values are not absolute binding free energies. We
assumed however that the conformational entropy
for each peptide binding to the same protein was
similar and thus the MM/PBSA method accurately
predicted the relative binding affinities of the
peptides. From the clustering results, it was
apparent that the binding clusters had the most
favorable binding free energies relative to the other
clusters.

The peptides in each binding cluster were used
to create an HMM (binding cluster HMM). In
addition, control HMMs were created as described
inMethods. Common sequence characteristics, i.e. a
sequence motif, represented by these HMMs are
shown in Figure 2. The experimentally derived
motifs as described in the literature are also shown
for comparison.

Figure 2(a) shows representations of the binding
motifs of the SAP SH2 domain. The experimentally
derived motif for SAP has been described by Poy
et al.20 as TIpYXX(V/I), where T,I,pY,X, and V
represent threonine, isoleucine, phosphorylated
tyrosine, any amino acid, and valine, respectively.
In another study, Hwang et al. have described the
SAP SH2 binding motif as (T/S)XXXX(V/I).29 The
motif derived by the alignment of 11 known
interaction sites of the SAP domain is shown at
the center of Figure 2(a). The motif showed the
information regarding the conserved features of the
binding motif described by the experimental
studies but features specific to the 11 known
binding peptides are over-represented. Alterna-
tively, if the peptide sequences in the binding
cluster were used, the motif conveyed more of the
features of the experimentally derived binding
motif: (1) no conservation at positions YK4, YK3,
YC1, and YC4; (2) threonine at position YK2; (3)
isoleucine at position YK1; and (4) valine at
position YC3. The conserved leucine at position
YC2 was also consistent with the peptide library
studies by Poy et al. and Hwang et al., although this
position was not chosen to be represented in the
reported motifs.20,29 In addition, the conserved
alanine at position YC5 was found to be consistent
with the Hwang et al. study but that position was
not examined by Poy et al. Overall, the motif
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derived from the binding cluster represented a
reconstruction of the experimentally derived motif.
For the control HMM motif, one position (a valine
residue conserved at position YC3) was found to be
the same for both the control and the experimental
motif, but overall the motifs were not considered to
be similar.

The binding motifs of the Grb2 SH2 domain are
displayed in Figure 2(b). The experimentally
derived motif for the domain was described
by Songyang et al.18 as pYFNF, where F is a
hydrophobic residue and N is an asparagine
residue. In the motif derived from the 15 known
binding peptides, i.e. the known only motif, the
asparagine at position YC2 was apparently
highly conserved as it was given in upper case,
which is a property indicating that it was present
in greater than 50% of the cases. (The asparagine
at position YC2 was actually present in all of the
known examples.) In examining the known only
motif, the correspondence with the experimen-
tally derived motif was difficult to discern, since
the motif contained too many features idiomatic
to the 15 known binding sequences. In contrast,
the motif derived from the binding cluster
emphasized the major features found by the
experimental study. These features are a hydro-
phobic residue at position YC1, an asparagine at
YC2, and a hydrophobic residue at YC3. For the
control, the majority of these characteristics were
not exhibited, indicating that the experimental
motif was not present for the sequences of the
control cluster. We note that the partial enrich-
ment of the asparagine residue at position YC2 in
the control motif reflected the fact that there is
100% conservation of that residue in the known
binding sequences, which were part of the control
cluster.

Results of database searches

We examined the ranks of the peptides known to
interact with each domain upon a database search
of 174,604 tyrosine-containing human peptide
sequences in the SWISS-PROT database using the
three different HMMs: (1) the binding cluster HMM
created with sequences in the binding cluster; (2)
the control cluster HMM created with the known
binders and the background peptides randomly
selected from the human proteome; and (3) the
known only HMM created with only the sequences
of the known binding peptides. Shown in Figure 3
are the log percentile ranks of the known binders
after being retrieved by each one of these HMMs.
Based on the distributions of the known binders, the
performance in placing the known binders within
the top scoring peptides was best for the known
only HMM, followed by the binding cluster HMM,
and then the control cluster HMM. Student’s t-test
was used to quantify the difference of the mean log
percentile rank of the known binders when using
the binding cluster HMM versus the control cluster
HMM. The p-value of that t-test was 2.78!10K6 and
1.62!10K4 for the SAP and Grb2 binding site
searches, respectively. These tests indicated that the
binding clusters contained information with regard
to binding that extended beyond that contained in
the known binding sequences.

For the searches using the known only HMMs, it
was not surprising that the known binding peptides
were retrieved at the very top of the ranked lists. All
of the 11 known binders for the SAP SH2 binding
site search were being retrieved within the top 23
peptides of the ranked peptides and all of the 15
known binders of the Grb2 SH2 domain were
within the top 54. The known only HMMs were
therefore highly specific for the known binding
sequences. These HMMs may be used to identify
binding sites that are highly similar to the set of
known sequences but could miss those with
divergent sequences. We therefore focused on the
binding cluster HMMs, as they exhibited more
general motifs that were consistent with those
derived experimentally.

For the binding cluster HMMs, the search results
were analyzed in the following ways: (1) comparing
the results to those of a similar search made using
SCANSITE; (2) noting the possible interaction sites
of known interaction partners documented in the
BIND and MINT databases;30,31 and (3) manually
reviewing the top scoring candidates. The SCAN-
SITE comparison could only be done for the Grb2,
as the SAP SH2 domain binding motif was not yet
available in SCANSITE, although the requisite
peptide library experiments had been done.20,29

For the Grb2 SH2 domain binding site search, the
top 2000 (the maximum number of) sites retrieved
by SCANSITE search of human sequences in
SWISS-PROT were compared to the top 2000 sites
retrieved by the binding cluster HMM. The result
was that there were a total of 650 overlapping sites,
indicating that there was good agreement between
the computationally derived motif and experimen-
tally derived motif on which the SCANSITE search
was based. To further check the performance of
SCANSITE versus the binding cluster HMM, the
ranks of known binders were examined. For both
searches, 12 of the 15 known binding sites were
found within the top 2000 ranked peptides.

The comparison results of the Grb2 SH2 binding
site search showed that the binding cluster motif
and the SCANSITE motif were similar. That is,
although both motifs yielded a large number of false
positives upon screening a large set of peptide
sequences, the fact that the two motifs found
overlapping groups of peptides indicated that
they contained similar information. Further, since
the two motifs were similar, we inferred that the
computational screening method that was needed
to generate the binding cluster HMM provided a
viable alternative to the experimental peptide
library screening that was required to derive the
SCANSITE motif.

The second way to analyze the searches with the
binding cluster HMMs was to note if the proteins
containing any of the top 2000 ranked peptides



Figure 3. Plots of the log
percentile ranks of the known
binding peptides for database
searches using three different
HMMs: the known only HMM
(red), the binding cluster HMM
(green), and the control cluster
HMM (blue). (a) Results of the
SAP SH2 domain binding site
search; (b) results for the Grb2
SH2 domain binding site search.
Student’s t-test was used to
compare the mean log percentile
ranks of known binders as
retrieved using the binding cluster
HMM and the control cluster
HMM. The p-value for that t-test
was 2.78!10K6 for the SAP SH2
domain binding site searches and
was 1.62!10K4 for the Grb2 SH2
domain binding site searches.
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were known to interact with the associated SH2
based on annotation in the protein interaction
databases such as BIND and MINT. There were
several of these overlapping proteins and they are
listed in Table 2 for both the Grb2 and SAP SH2
domain binding site searches. For each interaction
candidate listed, possible sites of interaction are
suggested by our search.

The final way of analyzing the binding cluster
HMM searches was to determine if the top ranking
peptides were likely binding partners based on
manual review. To increase the probability of
finding true interaction partners within these top
candidates, a conservation filter was first applied to
remove less likely binding candidates. The steps
involved in applying the conservation filter are
described in Figure 4 and in Methods. The
conservation filter removed approximately 20% of
the top scoring peptides for the Grb2 search and
approximately 5% of the top scoring peptides for
the SAP search. The following describes some of the
top 50 scoring conserved peptide candidates that
had experimental evidence for the interaction based
on the manual review.
For the Grb2 SH2 domain binding site search,

the protein tyrosine-protein kinase receptor UFO
(UniProt accession code P30530) contained a
peptide that had an overall search score rank of
49. That site corresponds exactly to the Grb2 SH2
domain binding site reported by Braunger et al.32

The binding site was apparently missed during the
survey conducted by curators of the Phospho.ELM
database33 for documented peptide examples of
Grb2 SH2 domain binding sites. Since the site was



Table 2. A list of possible interaction sites for the Grb2 and SAP SH2 domains

Protein name
Accession

code Search rank Tyrosine positions

A.
Beta-adaptin P63010 74 276
GTPase-activating protein GAP P20936 125, 632 472, 615
Spectrin alpha chain Q13813 126 2430
Linker for activation of T cells O43561 187 1156
60 S ribosomal protein L3 P39023 329 1118
Bullous pemphigoid antigen 1, isoforms 6/9/10 O94833 425, 1742 633, 739
Bullous pemphigoid antigen 1, isoforms 1/2/3/4/5/8 Q03001 426, 1708, 1743 1160, 460,1271
Receptor-type tyrosine-protein phosphatase alpha P18433 446 588
Linker for activation of T cells O43561 730, 740 220, 200
Polypyrimidine tract-binding protein 1 P26599 878 430
Myosin Ic O00159 882 405
Actin-like protein 3 P61158 886 316
Receptor-type tyrosine-protein phosphatase alpha P18433 893, 1076 295, 362
Putative RNA-binding protein Luc7-like 2 Q9Y383 912 173
Filamin B O75369 967 181
Serine/threonine-protein kinase PAK 1 Q13153 1014 464
40 S ribosomal protein S11 P62280 1087 37
Epidermal growth factor receptor P00533 1099 1110
USP6 N-terminal like protein Q92738 1219 551
Alpha-actinin 1 P12814 1303 161
SHC transforming protein 3 Q92529 1342 341
Myosin Ia Q9UBC5 1452 399
Glutathione S-transferase P P09211 1462 198
Myosin IIIB Q8WXR4 1464 1275
Alpha-actinin 4 O43707 1604 180
Protein phosphatase 1 regulatory subunit 12A O14974 1768 68
Inositol 1,4,5-trisphosphate receptor type 3 Q14573 1813 1588
Ras GTPase-activating protein 1 P20936 1899 619
Tumor necrosis factor ligand superfamily member 6 P48023 18 258
Rap guanine nucleotide exchange factor 1 Q13905 994 485
B.
TRK1 transforming tyrosine kinase protein P04629 680 756
TrkB tyrosine kinase Q16620 706 757
Proto-oncogene tyrosine-protein kinase LCK P06239 469 841

The list was constructed by identifying proteins containing one of the top 2000 scoring peptides retrieved by a search with a binding
cluster HMM that were documented to bind either the Grb2 protein or the SAP protein based onMINTor BIND annotation. The name of
the protein, the UniProt accession code, the rank of the peptide according to the search, and the tyrosine position corresponding to the
proposed binding site are listed. Group A shows possible binding sites of the Grb2 SH2 domain and group B shows possible binding
sites for the SAP SH2 domain. The lists exclude those sites that were in the original set of known sites.
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retrieved at rank 49 of 174,604 possible sites and
was not part of the input known set, it suggests that
the binding cluster HMM can identify true binding
sites for the Grb2 SH2 domain. Also, the same site
had a rank of 227 for the SCANSITE search,
indicating that the two search techniques are of
complementary utility, notwithstanding that the
techniques were of similar utility as shown above.
Finally, the site had a rank of 1600 using the known
only HMM, indicating that the binding cluster
HMM has the utility of finding true binding sites
with a sequence somewhat dissimilar to the known
binding sequences.

The UFO protein had been originally obtained
from a person with myeloproliferative disorder and
was named unknown functioning oncogene or
UFO.34 It is in the Axl protein family, which are
characterized as having extracellular immuno-
globulin domains and a fibronectin domain pro-
posed to be involved in cell adhesion.35 Ligands of
the UFO protein receptor link it to hemostasis as
Gas6, a sequence relative of protein S, has been
demonstrated to be the interaction partner.35 We
infer that coagulation activities may be integrated to
cellular responses, such as growth and repair, upon
ligation of UFO with Gas6 through a signal
transduction pathway that involves the Grb2 SH2
domain. That inference is based on the following
facts: (1) the Grb2 SH2 domain binding site on UFO
found here has been experimentally validated;32 (2)
ligation of a protein receptor related to UFO (tyro 3)
with protein S protein causes specific tyrosine
phosphorylation;36 (3) the tyro 3/protein S system
is analogous to the UFO–Gas6 system since the tyro
3 is related in sequence to UFO and protein S is
related in sequence to Gas6;36 and (4) the tyro 3/
protein S system integrates coagulation activities
and intracellular signaling.36 The inference could
have made based solely on literature but the
binding site search reaffirmed the interaction
between Grb2 and UFO and prompted an examin-
ation of the biological context of that interaction.

The second example is protein macrophage
colony stimulating factor 1 receptor (P07333),
which was ranked at number 31 in the Grb2 binding
site search after application of the conservation



Figure 4.Diagram illustrating the
method for testing whether a top
scoring human peptide found
during the database search had a
conserved counterpart in mouse
and should therefore be considered
to be a more likely binding candi-
date. Step 1 was to perform a
pairwise BLAST alignment of the
protein fromwhich the high scoring
human peptide was derived against
its mouse homolog in order to

identify the portion of the mouse protein that aligned with that human peptide. That aligned portion between the
high scoring human peptide with its mouse counterpart is shown highlighted in blue. Step 2 was to compare the aligned
mouse peptide to the binding cluster HMM. If that comparison gave a high score, the human peptide was more likely to
be a binding candidate and was kept for manual review.

† http://modem.ucsd.edu/billm/SH2_Supp/
SH2_SupplementaryMaterial.htm
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filter (SCANSITE rank 1466). The protein is
involved in regulating growth, survival, and
differentiation in hematopoietic cells of the mono-
cyte–macrophage lineage.37 The tyrosine at position
697 was shown to be phosphorylated through
autocatalysis and to interact with the Grb2 SH2
domain.38 Based on the search results, the tyrosine
at position 923 is also a binding site for the Grb2
SH2 domain. That site has been shown to be a
tyrosine phosphorylation site of unknown func-
tion.37 Neither the 923 site nor the 697 site were
included in the known binding sequences that were
documented in the Phospho.ELM database as
binding to the Grb2 SH2 domain.

At rank number 40 (SCANSITE rank 45) was a
peptide from the desmoglein-2 protein (Q14126).
The desmoglein-2 protein is a transmembrane
glycoprotein involved in calcium-dependent cell–
cell adhesion.39 Upon inhibition of the epidermal
growth factor receptor (a kinase that creates a
binding site for the Grb2 SH2 domain by autophos-
phorylation),40 there is a decrease in desmoglein-2
tyrosine phosphorylation.41 Based on the search
results, we propose that the Grb2 SH2 domain binds
to the phosphorylated desmoglein-2 protein at
tyrosine position 511. That interaction would infer
a role for the Grb2 protein in the regulation of cell
adhesion via binding to the desmoglein-2 protein.

Searches using the binding cluster HMM created
to identify the SAP SH2 binding sites also produced
viable binding site candidates. One definitive
example was for the protein NTB-A (Q96DU3),
which contained a peptide at tyrosine position 309
that ranked number 4 in the list of 176,604 possible
tyrosine binding sites being searched. The NTB-A
has been shown to bind to the SAP SH2 domain,42

but the specific binding site was not confirmed.
Bottino et al. described the NTB-A protein as a novel
binder of the SAP SH2 and showed that it had two
tyrosine-based motifs with the consensus sequence
TXYXX(V/I), one of which corresponded to tyro-
sine position 309 found during the search. We
provide further support that position 309 is a
binding site of the SAP SH2 domain. Note that the
NTB-A protein has 22% sequence identity with the
SLAM protein so it was retrieved when creating
the initial dataset of candidate binding sites for the
SAP SH2 domain. The procedure of including
additional candidate binding sites by finding
sequences related to a protein known to interact
with the binding domain therefore appears to be
validated for this case. (See Methods for details.)
An interesting candidate for binding to the SAP

SH2 domain is the Vav proto-oncogene protein
(P15498), whose position 826 was ranked 16 in the
search. Evidence that the protein may bind to the
SAP SH2 domain includes the following: the
protein has been shown to be tyrosine phosphoryl-
ated, it is involved in signal transduction, and it
plays a role in B-cell proliferation,43 which is a
function of the SAP SH2 domain.11 Also, in NK cells
of persons with the XLP syndrome, a disease caused
by a deleterious mutation in SAP, Vav protein
phosphorylation is deficient following the 2B4
receptor stimulation.44 Moreover, it has recently
been demonstrated that phosphorylation of the Vav
protein is SAP-dependent and the mechanism is
still under investigation.44 We speculate that the
mechanism involves an association of the SAP SH2
domain at position 826 of the Vav protein.
We anticipate that further manual review of more

top scoring candidates would yield more viable
candidates, which could suggest more novel
functions of Grb2 and SAP proteins. The candidates
outlined here show the utility of reviewing the
search results motifs. For future analysis, the
hidden Markov models can be retrieved†.
Discussion

We proposed here a computational method for
identifying binding partners and binding sites of
modular domains and have demonstrated its
feasibility on SAP and Grb2 SH2 domains. Ideally,
if the binding free energies between the domain of
interest and all potential peptides in the genome
were accurately calculated, binding sequences

http://modem.ucsd.edu/billm/SH2_Supp/SH2_SupplementaryMaterial.htm
http://modem.ucsd.edu/billm/SH2_Supp/SH2_SupplementaryMaterial.htm


Figure 5. Histograms that were plotted originally in
Figure 1 are shown again with the top 100 peptides that
were found during the database search overlaid. The
known binders are in black; 100 of the original candidate
peptides are shown in white; and 100 of the top scoring
peptides retrieved by a database search using the binding
cluster HMM are shown in grey. The top scoring had a
relatively high affinity that was close to that of the known
binding peptides. (a) Plots for the SAP dataset; (b) the
Grb2 dataset.
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could have been easily identified. In reality,
rigorous free energy calculations were too time-
consuming to be applied at a genomic scale while
rough free energy estimation methods would not
have been accurate enough to reliably distinguish
binding from non-binding peptides. It was reason-
able to assume that binding peptides tend to
contain the binding motif and have more favorable
binding affinities. Our method thus combined
information obtained from these two orthogonal
approaches, binding free energy estimation and
sequence analysis, to achieve a better performance
than using either approach alone (see above). As we
only needed distributions of binding affinities but
not accurate ranking of peptides, we could estimate
the binding free energies of thousands of peptides
using efficient approaches.

Our method used a clustering scheme to
combine sequence information and binding energy
estimates and thus allowed those peptides contain-
ing sequence and binding energy patterns similar
to the known binding sequences to be placed
together in the same group, i.e. the so-called
binding cluster. As a consequence, the sequence
motif of the binding cluster, which was a synthesis
of the predominant sequence features of the group,
implicitly contained information about high affi-
nity peptides that had an energy distribution
similar to the known binders. To illustrate that
point, shown in Figure 5 are the plots given in
Figure 1 overlaid with the top 100 peptides
retrieved from the human sequences in SWISS-
PROT by each of the binding cluster HMMs.

The training set of peptide sequences used to
create the binding cluster HMMwas constructed by
screening a set of randomly selected human peptide
sequences for affinity similar to a group of known
binding peptides: essentially new raw binding data
were found from an in silico binding experiment.
The test set was the set of all possible interaction
candidates in a sequence database. The study is
analogous to the peptide library experiment where
a binding motif is derived from peptides with
relatively high binding affinity and the test set is the
set of all possible interaction candidates. Our
method thus provides an alternative to suggesting
candidates to experimentalists to narrow down the
searching possibilities for novel binding sites of a
modular domain.

The utility of the current method was that it
extracted information regarding the contribution of
binding by amino acid sequence flanking the
conserved tyrosine position. That information was
used to create an expandedmotif that could identify
likely interaction candidates for the Grb2 and SAP
SH2 domains. The candidates were found to be
useful in the following respects: they implicated the
Grb2 and SAP SH2 domains in novel signaling
pathways, aided in consolidating the known set of
interaction partners, and provided possible sites of
interaction for known interaction partners of the
domains. The candidates provide starting points for
further experimental studies.
Since the method requires only a protein–peptide
complex structure, it can be applied to any protein–
peptide complex even when the results of a peptide
library experiment are not available. Also, since it
considers only peptides existing in the relevant
proteome, the bias introduced by having strong
non-physiological binding peptides present in a
random peptide library can be avoided. Given the
fast pace of advancement of structural genomics
and homology modeling, we anticipate that the
method will become more and more useful.

The method presented here is far from perfect
and it can be improved in many aspects. For
example, more accurate binding affinity calculation
and more efficient sampling method are desired;
additional information of protein interactions
in vivo including the cellular compartmentalization
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of proteins, the ability of the kinase to bind to the
substrate (a step required prior to the high-affinity
SH2 binding), and location of the peptide within the
protein (either on the surface or buried) no doubt
would help.
Methods

Datasets

Protein–peptide complexes of two SH2 domains, Grb2
and SAP, were found in the Protein Data Bank.45 The
complexes were solved by X-ray crystallography and had
the best available resolution. The structure of SAP SH2
domain was that solved in complex with a peptide
derived from the SLAM protein by Poy et al.20 The
structure of Grb2 SH2 domain was that solved in complex
with Shc-derived peptide by Nioche et al.46 For each
domain, a set of possible binding peptides and a set of
known binding peptides were generated, which had the
same length and tyrosine position as the peptide in the
solved peptide/domain complex. In the case of the Grb2
SH2 domain, the peptides were nine amino acid residues
long with the sequence (XXXYXXXX), where X represents
any amino acid and Y indicates tyrosine. A group of 1400
such peptides were selected at random from human
protein sequences available in the SWISS-PROT data-
base.27 A total of 15 peptide sequences known to interact
with the Grb2 domain within human proteins were found
in the Phospho.ELM database.33 For the SAP domain, the
same 1400 candidate peptides were used again but had an
extension of one residue to match the peptide length
found in the solved complex. Additional peptides for the
SAP dataset were selected from proteins related in
sequence to the SLAM protein, a known interaction
partner of the SAP SH2 domain. The peptides were found
by performing a BLAST search with SLAM protein
sequence against all human protein sequences in the
UniProt database with an expectation value cutoff of
10.47,48 Each tyrosine-containing peptide in the retrieved
protein sequences related to the SLAM protein was then
extracted and tested for conservation in the following
manner: a BLAST search of the protein containing the
peptide wasmade against the mouse protein sequences in
UniProt; the highest scoring mouse sequence was taken to
be the mouse homolog to the human protein; if there was
a tyrosine residue at the aligned tyrosine position in the
mouse homolog, the human peptide was kept. In total,
there were 399 conserved peptides within SLAM-related
protein sequences that were added to the SAP dataset.
Eleven known interaction peptides of the SAP domain
were documented by Li et al.49 In summary, there were
1415 peptides in the Grb2 dataset (15 known binders and
1400 randomly chosen candidates) and there were 1810
peptides in the SAP dataset (11 known binders, 1400
randomly chosen candidates, and 399 candidates from
SLAM related sequences).

Modeling of peptide/domain complexes
and binding energy estimation

A three-dimensional model was generated for each
SH2 in complex with each peptide sequence in its dataset
using the backbone conformation of the peptide in the
solved complex as a template and modeling side-chain
conformations using the program SCWRL.50 Each model
complex was solvated in a box of TIP3P water molecules
and optimized by 2500 steps of energy minimization
using the AMBER 8 software package with the parm99
force field.51,52 The minimization entailed 1250 steps
using the steepest descent method followed by 1250 steps
using the conjugate gradient method.
The binding energy of each peptide to its associated

SH2 domain was calculated using the molecular mecha-
nics/Possion–Boltzman solvent-accessible surface area
(MM/PBSA) method.24 The conformational entropy term
was not considered because it was previously shown not
to correlate with experimentally measured binding
energy for a similar system53 and such calculation was
also time-consuming.
To determine an optimal set of energy measurement

conditions, a comparison was made between the mean
binding energy of the known binding peptides and the
mean energy value calculated for all the candidate
peptides using Student’s t-test. Better separation of the
means was indicated by a lower p-value of the t-test.
Comparisons were made for the case where all the
peptides were in a tyrosine-phosphorylated state and
where all the peptides were in the unphosphorylated
state.

Clustering of peptides based on binding free energy
and sequence characteristics

The parameters used for clustering were the amino acid
type at each position of the peptide, which could be any of
the 20 natural amino acids, and the estimated binding
energy of the peptide. For each domain, peptides were
clustered using three schemes: sequence only, energy
only, and sequence and binding energy together. Cluster-
ing was done in an unsupervised manner, using the
k-means algorithm followed by optimization with expec-
tation maximization (EM) algorithm as implemented in
the Weka machine learning software.54–56 Energy values
were modeled as a normal distribution and peptide
sequences were modeled as a position-specific frequency
matrix (PSFM). The likelihood that was to be maximized
using EM was calculated as:

Q
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where k is the peptide instance, c is the cluster number, f is
the frequency value for the amino acid type at the position
i of the peptide for that cluster. The quantity rc(Ek) is the
probability that a peptide takes on the energy value of the
peptide k in cluster c. The quantity lc is the fraction of the
peptides belonging to cluster c. To avoid multiplication
steps, the log likelihood was calculated instead as the sum
of the logs of the individual components.
The number of clusters was selected by a cross-

validation-like procedure. For each of the ten divisions
of the data, the likelihood measure shown above was
calculated assuming that there was one cluster and
averaged across the ten divisions. The process was then
repeated assuming that there were two clusters. If the
average likelihood calculated when assuming two
clusters was greater than when assuming one cluster,
the number of clusters was set to two. The number of
clusters was successively increased in a similar way until
the measured likelihood no longer increased.

Binding motif extraction

After clustering was complete for each domain dataset,
cluster contents were examined with respect to the
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number of known binders and candidate peptides. The
cluster containing the majority of the known binding
peptides was labeled as the binding cluster while all the
other clusters were collectively labeled as the non-binding
cluster. A hidden Markov model was generated using
sequences in the binding cluster with the HMMER
software†. Two additional control HMMs were also
generated for each domain dataset. The first was created
using the known binding peptides in the binding cluster
plus peptides selected randomly from background to
make the total number of the peptides in the control
cluster the same as that in the binding cluster. (The set of
background peptides was 174,604 tyrosine-containing
peptides in human proteins available in SWISS-PROT.)
The second control group contained only known binding
peptides.
To visualize the major characteristics of each HMM, the

program hmmemit in the HMMER software was utilized.
The program uses a majority rule estimation of the amino
acid type found at each position of the model in the case
where the match score was greater than the insertion
score. For the opposite case, an insertion point is shown
represented as a dot at that position.
Database searches

A dataset of 11,935 human protein sequences were
retrieved from the SWISS-PROT database on March 1,
2005. From these sequences, the program CD-HIT was
used to remove the most highly redundant sequences so
they did not obscure the database search results.48,57 The
representative list contained 11,426 sequences and had
less than 90% sequence identity. For the Grb2 binding site
scans, all peptides of nine amino acid residues length
having tyrosine at position 4, i.e. with the sequence
XXXYXXXXX, were extracted. Similarly, all peptides of
ten amino acid residues length with tyrosine at position 5
were extracted for the SAP binding site scans. In total,
there were 174,604 peptides available for both scans. All
the peptides were scored with each of the Grb2 and SAP
HMMs and the scores were converted to log percentile
ranks.
To assess the utility of each binding cluster HMM,

database searches were analyzed in different ways. The
first way was to compare the mean log percentile rank of
the known binders as they were retrieved using the
binding cluster HMM with that using the control HMM
built from the known binders plus peptides in the non-
binding cluster. The second way was to compare the
search results obtained by SCANSITE. Third, the overlap
of the top 2000 candidates with interacting proteins
documented in either the MINT or BIND database was
found and possible site of interaction based on the
position of the candidate peptide were proposed. Fourth,
for the top 50 scoring peptides the literature was reviewed
to identify evidence of the interaction with the associated
SH2 domain.
Before undertaking the manual review process, puta-

tive false positives from the top scoring peptides were
removed by applying a filter requiring the binding motif
to be conserved in its mouse protein homolog. That was
done by taking the human protein from which a top
scoring peptide was derived and performing a BLAST
search against all mouse protein sequences in UniProt.
For the highest scoring mouse protein, the mouse peptide
that aligned to the tyrosine site of the human peptide was
† http://hmmer.wustl.edu/
scored using the binding cluster HMM. Only if the mouse
peptide was scored high, i.e. a score that 80% of the
known binders were above, the human peptide was kept.
The top 50 human peptides found to be conserved in that
way were assessed as to their viability of being true
binding candidates by review of documentation sources
that included Medline references,58 SWISS-PROT annota-
tion, the MINT database, and the BIND database.
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