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The SH3 domain of the human protein amphiphysin-1, which plays important roles in clathrin-mediated
endocytosis, actin function and signaling transduction, can recognize peptide motif PXRPXR (X is any
amino acid) with high affinity and specificity. We have constructed a complex structure of the
amphiphysin-1 SH3 domain and a high-affinity peptide ligand PLPRRPPRA using homology modeling
and molecular docking, which was optimized by molecular dynamics (MD). Three-dimensional
quantitative structure-affinity relationship (3D-QSAR) analyses on the 200 peptides with known binding
affinities to the amphiphysin-1 SH3 domain was then performed using comparative molecular field
analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best COMSIA
model showed promising predictive power, giving good predictions for about 95% of the peptides in
the test set (absolute prediction errors less than 1.0). It was used to validate peptide-SH3 binding
structure and provide insight into the structural requirements for binding of peptides to SH3 domains.
Finally, MD simulations were performed to analyze the interaction between the SH3 domain and another
peptide GFPRRPPPRG that contains with the PXRPXsR (s represents residues with small side chains)
motif. MD simulations demonstrated that the binding conformation of GFPRRPPPRG is quite different
from that of PLPRRPPRAA especially the four residues at the C terminal, which may explain why the
CoMSIA model cannot give good predictions on the peptides of the PXRPXsR motif. Because of its
efficiency and predictive power, the 3D-QSAR model can be used as a scoring filter for predicting peptide
sequences bound to SH3 domains.
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Introduction

Protein—protein interactions are often mediated by small
modular domains, among which Src Homology 3 (SH3) domain
is the most abundant in the human genome and has been well
characterized. SH3 domains are 50—70 amino acids long and
share a highly conserved fold.! They are present in proteins
with critical roles in signal transduction, cytoskeleton organiza-
tion and other important biological processes.2”® The initial
understanding of the nature of SH3 domain ligands was derived
from two proteins, 3BP1 and 3BP2, which bind to the Abl SH3
domain. Mutagenesis studies on these proteins has identified
the consensus sequence XPXXPPPyXP (X represents any resi-
due and y represents hydrophobic residues) to which the Abl
SH3 domain binds.® It was shown that individual peptides with
these sequences could bind to the Abl- and Fyn-SH3 domains
with similar affinities (5—40 uM).”

Experimental results using combinatorial peptide libraries
show that most SH3 domain binding peptides possess the
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sequence motif PXXP (X represents any residue) and bind to
SH3 domains in a left-handed polyproline helix type II con-
formation.? Isolated SH3 domains can bind to contiguous
proline-rich ligands, characterized by a core region of 7—9
amino acid long.! The two proline residues in the PXXP motif
occupy two hydrophobic pockets, formed by aromatic residues
that are conserved in most SH3 domains. The third binding
pocket is lined by negative-charged residues and thus accom-
modates a positively charged side-chain. The orientation of
peptide ligands depends on the position of the positive-charged
residue in the peptides. SH3 domain binding peptides can be
divided into two classes, which contain +XXPXXP and PXXPX+
(where + refers to a positively charged residue) motifs,
respectively. Figure 1 shows the binding position and the
nomenclature of the two classes of peptides. Pro is preferred
at position Py and P; in class I ligands and position P-, and P,
in class II ligands.®

Identification of the sequence motifs recognized by different
SH3 domains is a crucial step in understanding the protein-
peptide interactions and peptide library experiments are often
used to serve this purpose.®~!! Although the peptide library has

10.1021/pr0502267 CCC: $33.50 [ 2006 American Chemical Society



Prediction of Binding Affinities

P1

P2

(o]
@Psf‘—- Site 3

@
P2 \
P-1(L3 P4)P0 &= Site 2

@ P-3 &—— Site 1
N
)

P1

@
P2 \
P-1(P7

N
@m = Site3

L6)P0 &= Site 2

@ p.3 <—= Site 1
Cc

(B)

Figure 1. Diagram of the binding position and nomenclature of
class | peptides (A) and class Il peptides (B) following the
nomenclature proposed by Lim et al.8 The sequences in Figure
A and B are the c-Src RLP2 ligand and c-Src PLR1 ligand,
respectively.’? The RLP2 ligand has the sequence RALPPLPRY
and the PLR1 ligand has the sequence AFAPPLPRR (sequence
shown in bold are two proline residues in PXXP motif).

a limited coverage of all possible peptides of, for example, 10
residues (about 1076 to 1073), it is too time-consuming and
expensive to synthesize all 10-residue long peptides found in
the human genome and perform the peptide-SH3 domain
binding assay to identify the SH3 binding partners. Therefore,
it is important to develop computational methods to derive
such information. A rigorous computational approach would
be developed to calculate the binding free energy between the
SH3 domains and peptides to identify binding sequences.!3"15
However, accurate computation of binding free energy is far
from trivial. Besides, it is quite time-consuming on protein-
peptide systems. In the field of computer-aided drug design,
the correlation between the structures and the biological
activities of small organic molecules can be described by 2D-
or 3D-QSAR methods. We hypothesized that these methods
could also be used to characterize the structural properties of
peptide ligands that bind to specific protein modular domains
such as the SH3 domain. The previous study by Doytchinova
et al. investigated the interactions between the MHC protein
and its peptide ligands using comparative molecular field
analysis (CoMFA) and comparative molecular similarity indices
analysis (CoMSIA), and obtained models with good predictive
power.'® Here we have applied 3D-QSAR to study the interac-
tions between the human amphiphysin-1 (hAmphl) SH3
domain and its peptide ligands.

Amphiphysin represents two very similar proteins, amphi-
physins 1 and 2, which may be involved in clathrin-mediated
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hAmphl SH3 | 626 | KVETLHDFEAANSDEL TLQRGDVVLVVPSDSEADQDAGWL
1bb9 46 | KVQAQHDYTATDTDELQL KAGDVVLYV | PFQNPEEQDEGWL
hAmphl SH3 VGVKESDWLQYRDLATYKGLFPENFTRR
1bb9 MGVKE SDWNQHKELEKCRGVFPENFTERVQ

Figure 2. Sequence alignment between hAmph1 SH3 and 1bb9.

endocytosis, actin function and signaling pathways.!”"® Am-
phiphysin 1?2° has an SH3 domain at its C-terminus?' that
interacts with high affinity and specificity to a class II SH3
domain binding site PSRPNR in the proline-rich C terminus of
dynamin.?? The specific interaction between the SH3 domain
of amphiphysin 1 and dynamin plays a critical role in endocytic
function.?? Since the structure of the human amphiphysin 1
(hAmph1l) SH3 domain has not been solved, we built a model
of the hAmph1 SH3 domain in complex with its peptide ligand
using homology modeling and molecular dynamics (MD)
simulations. We then aimed to obtain a predictive model of
peptide binding affinity, which may be used to identify
potential binding proteins of the hAmphl SH3 domain. Two
types of 3D-QSAR techniques, COMFA2? and CoMSIA,?* were
used in the study. CoMFA and CoMSIA are well-documented
and validated techniques for the study of QSAR at the 3-D
level.?> However, COMFA or CoMSIA is unable to appropriately
describe all of the binding forces based only on steric and
electrostatic molecular fields to model receptor—ligand interac-
tions. The direct and complete representations of the binding
forces between the peptide and the SH3 domain can only be
fully described by the atomic level peptide/protein interactions
derived from the complex structures. Therefore, we expect that
combining the information obtained from receptor- and ligand-
based approaches can give a full description of peptide-SH3
domain interactions.

Materials and Methods

Homology Modeling of hAmph1 SH3 and Construction of
the SH3/PLPRRPPRAA Complex. The structure of the hAmph1
SH3 domain was modeled based on the crystal structure of the
rat amphiphysin-2 (rAmph2) SH3 domain (PDB entry 1bb9).%6
A sequence alignment using FASTA program?’ indicated that
the percentage of sequence identity between the two domains
was 55.9% (Figure 2). The prediction of the hAmphl SH3
model was accomplished by using the Homology module in
INSIGHTIL.?® The modeled structure was minimized using the
CFF91 force field*® implemented in the DISCOVER module in
INSIGHTIL. Then, the final model was quality-verified using the
Profile-3D module in INSIGHTII*® and PROCHECK.3!

The 10 core residues (PLPRRPPRAA) of peptide ESPLPRRP-
PRAARS reported by Landgraf et al.®? was selected as the
effective binder to construct the SH3/peptide complex. As
described in the work reported by Cestra et al.,® the pXRPXR
amphiphysin consensus (where lowercase p indicates that Pro
is not absolutely conserved at that position) could be portrayed
as a novel class II peptide ligand with an unusual positive
charge at position Py and a tolerance for hydrophobic residue
at P,. Therefore, peptide ESPLPRRPPRAARS should adopt the
class II binding orientation. The structure of the hAmph1 SH3
domain complexed with peptide PLPRRPPRAA was modeled
based on the crystal structure of C—Crk N-terminal SH3 domain
complexed with C3G peptide (PPPALPPKKR) (PDB entry: 1cka)
as the template®** using INSIGHTII and the scap program.3*
More detailed descriptions of the homology modeling of
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hAmph1 SH3 and the construction of the SH3/PLPRRPPRAA
complex can be found in Partl and Part2 in the Supporting
Information.

Molecular Dynamics Simulations of the SH3/Peptide Com-
plex. MD simulations were employed to optimize the modeled
complex structure as well as to investigate the binding mode
of the peptide PLPRRPPRAA and the dynamic characteristics
of the hAmph1 SH3 structure. All MD simulations presented
in this work were performed using the AMBER8.0 software
package® and the AMBERO3 force field.®” Counterions of Na+
were placed near the SH3 domain using a Coulombic potential
on a grid to keep the whole simulated system neutral, and then
the system was solvated in a rectangular box of about 3900
TIP3P water molecules.® The water box extended 9 A away
from any solute atom. Particle Mesh Ewald (PME) was em-
ployed to calculate the long-range electrostatic interactions.3’
Prior to MD simulations, a series of minimizations were
preformed. All hydrogen atoms were first minimized, followed
by all water molecules, and then water molecules with coun-
terions. Next, a cycle of minimization was done to relax all
atoms without constraints. The maximum number of minimi-
zation steps was 20 000 steps and the convergence criterion
for the energy gradient was 0.05 kcal/mol/A. In MD simula-
tions, the SHAKE procedure was employed to constrain all
bonds involving hydrogen atom,* and the time step was 2.0
fs. The MD simulations consisted of a gradual temperature
increase from 10K to 300K over 30 ps and a 2900 ps simulation
for equilibration and data collection, during which a snapshot
was saved every 500 fs. The resulting trajectories were analyzed
using the ptraj and mm_pbsa modules in AMBERS.0.

Residue—Residue Interaction Analysis. The interactions
between each residue in peptide and each residue in the SH3
domain were analyzed using the generalized Born model/
solvent area (GB/SA) method in the mm_pbsa module in
AMBERS8.0. The interaction between residue—residue pairs
includes three terms: van der Waals contribution (AGaw),
electrostatic contribution (AGee) and solvation contribution
(A Gsolvation) .

AG

residue_pair

= AGy, + AG,, + AG,

solvation

= AG,q, + AG,, +

ele

AGgy + AGg, (1)

where AGyqw and AGgle are nonbonded van der Waal interaction
and electrostatic interaction between two residues, respectively.
The solvation contribution AGsoivaion Was calculated using the
GB/SA method. The polar contribution (AGgg) to solvation was
computed using GB with radii parametrized by Onufriev et al.*!
and AMBER charges. The nonpolar contribution (AGsa) to
solvation was estimated based on the accessible surface area
(Gsa = 0.0072 x Area). All energy components in eq 1 were
calculated from 50 snapshots taken from 0.8 to 3 ns of the MD
simulation.

Data Set. In total, 884 peptides reported by Landraf et al.
were selected for 3D-QSAR analyses.3? In Landraf et al. study,
a combination of phage display and SPOT synthesis was used
to find all peptides in the yeast proteome binding to eight yeast
SH3 domains, and peptides in the human proteome binding
to two human SH3 domains. For each domain, peptides
matching the defined patterns were synthesized at high density
on cellulose membrances by SPOT synthesis technology, and
the membranes were probed with the corresponding SH3
domain fused to glutathione S-transferase (GST). The intensity
of each SPOT was measured quantitatively in Boehringer light
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unites (BLUs). BLU, in contrast with the quantities using other
high-throughput approaches, has obvious correlation with the
dissociation constant.?? So here, the BLUs values were used as
the measure of binding in 3D-QSAR analyses. For the hAmph1
SH3 domain, the authors totally reported 2033 peptides with
experimental binding values. Considering the noise in a single
experiment, we thus only selected the 884 peptides that had
at least 2 experimental results for our analyses. The 884
peptides were randomly divided into a training set of 200
peptides (Table S1) and a test set of 684 peptides (Table S2).
The selection of training set and test set molecules was made
such that both sets contained peptides covering the entire
spectrum of the binding affinities.

Binding Modes of the Peptides and the Structural Align-
ment. The predicted complexed structure from homology
modeling and MD simulations was used as the template to
determine the binding conformation and molecular alignment
of all peptides. The average structure was fully minimized using
the sander program in AMBER8.0. And then the peptide
PLPRRPPRAA in the template molecule was mutated to a new
peptide from the peptide list. The peptide ligand extracted from
the minimized complexed structure was considered as the
active conformation of the peptide. We thus obtained an
ensemble of active conformation and natural orientation for
all peptides, which were used as alignment for the CoMFA and
CoMSIA calculations. The detailed descriptions of the deter-
mination of the binding mode of peptides can be found in Part3
in the Supporting Information.

CoMFA and CoMSIA Studies. (a) CoMFA Setup. CoMFA
calculations were performed using the QSAR method in
SYBYL.#> The overlapped peptides in the training set were
surrounded by a 3D grid of points in the three dimensions
extending at least 4 A beyond the union volume occupied by
the superimposed molecules. The default sp® carbon atom with
+1le| charge was selected as probe atom for the calcula-
tions of the steric and electrostatic fields around the aligned
peptides. In the CoMFA study, besides the usually used steric
and electrostatic fields, the H-bonding fields were also in-
cluded.®

To choose the optimum number of components (ONC) and
check the statistical significance of the models, leave-one-out
(LOO) cross-validation was used by the SAMPLS method,* an
enhanced version of Partial Least Square (PLS). The final 3D-
QSAR models were obtained using ONC on the entire training
set. The models were assessed by the explained variance r?,
standard error of estimate (SD), and F ratio. Column filtering
(minimum o) was used at the default value of 2 kcal/mol in
the cross-validation part.

(b) CoMSIA Setup. CoMSIA calculations were performed
using the QSAR option of SYBYL with five types of physico-
chemical properties in CoMSIA implemented in SYBYL, steric
contributions by the third power of the atomic radii, electro-
statics by partial charges, hydrophobicities by atom-based
hydrophobic parameters and H-bond properties by suitably
placed pseudoatoms, using a common probe with 1A radius,
+1 charge, +1 hydrophobicity and H-bond property of +1. The
extent and orientation of the grids surrounding the tested
molecules were the same as those in the CoMFA study. The
attenuation factor o, which is the coefficient of the squared
mutual distance in the Gaussian-type function in the calcula-
tion of similarity indices, was set to 0.3. The statistical evalu-
ation for the CoMSIA analyses was performed in the same
manner as described for CoMFA.
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(c) Calculations of Partial Charges. To consider the influ-
ence of different charge models to COMFA and CoMSIA models,
three types of partial atomic charges other than the AMBER
charges were considered: Gasteiger—Marsili charges,*
Gasteiger—Hiickel charge*® and MMFF94 charges.*” Both of
the Gasteiger—Marsili and the Gasteiger—Hiickel methods
calculate atomic charges based on information about the atoms
and their connectivity within the molecule. The MMFF94
atomic charges are computed based on the bond increment
parameters in the MMFF94 force field. The calculations of these
charges in SYBYL were automated using the SYBYL program-
ming language (SPL) scripts.

(d) g*>-Guided Region Selection (¢2-GRS). The g*-GRS pro-
cess has been described in detail elsewhere.*® In CoMFA, a
significant number of lattice points are excluded from the
analysis because CoMFA standard scaling applies equal weight
to data from each lattice point in a given field. The g*-GRS
technique refines a model by increasing the weight for those
lattice points that are most pertinent to the model. Thus, the
resultant g? exhibits better statistics compared to the conven-
tional ¢g®. g*>-GRS was executed using the region focusing
command in SYBYL.

Results and Discussions

Homology Modeling the Complex Structure of the hAmph1
SH3 Domain and its Peptide Ligand. The modeled structure
of the hAmphl SH3 domain was checked by Profile-3D and
PROCHECK in Insightll.?® The self-compatibility score of
Profile-3D was 21.6, which was higher than the low score 13.8.
The Ramachandran plot given by PROCHECK is shown in
Figure S2 in the Supporting Information. Fifty-four (94.7%) of
the 57 nonglycine and nonproline residues were located in the
most favored regions, and the remaining 3 residues were
located in the additional allowed regions of the Ramachandran
plot. Compared with most other SH3 domains, the hAmphl
SH3 domain contains an insertion of 4—5 residues in the n-Src
region. Figure S3 in the Supporting Information shows the
structural alignment of eight SH3 domains. Apparently the
n-Src regions of hAmph1 SH3 domain (pink line) and rAmph2
SH3 domain (blue line) are much longer than those of the other
SH3 domains. Of these 10 residues, there are four acidic
residues (Asp661, Asp659, Glu657, and Asp655) among which
Asp661 and Asp659 are close to the peptide binding pocket and
may have significant contributions to binding. Also, as in other
structures, the side-chains of the residues His631, Phe633,
Trp664, Pro687, and Phe714 in the hAmphl SH3 domain form
hydrophobic surface patches against the conserved proline
residues of the binding peptide. Along with the internal packing
positions of the peptides, the binding specificity is usually
determined by the interactions between residues in the n-Src
and RT loops of the SH3 domain.

Several experiments show that the amphiphysin SH3 do-
mains prefer two Arg’s in the internal packing positions of a
polyproline helix,*?73® which may be due to the favorable
electrostatic interactions between the domain and the Arg’s in
the peptide. We thus calculated the electrostatic potentials of
the hAmph1l SH3 domain (Figure 3). Electrostatic potentials
were calculated using the finite different Poisson—Boltzmann
method (Delphi program® in INSIGHTII with AMBER charges).
Compared with the other four SH3 domains, Abl tyrosine kinase
SH3 domain,® c-Crk N-terminal SH3 domain,?** Grb2 N-terminal
SH3 domain,’! and rat amphiphysin-2 SH3 domain,?® whose
electrostatic potentials were calculated in our previous work,°
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Figure 3. Electrostatic potentials of the peptide binding interfaces
for the hAmp1 SH3 domain. Negative areas are shown in red,
and positive areas are shown in blue. These figures are produced
using INSIGHTII.

Figure 4. Superposition of 21 snapshots extracted from the MD
trajectory from 1.0 to 3.0 ns. The solvent-accessible molecular
surface of hAmp1 SH3 is colored according to the electrostatic
potential calculated using the Delphi program in INSIGHTII. The
residues Pro at P2, Arg at PO, Pro at P-1, Pro at P-2, and Arg at
P-3 are colored by blue, and other residue are colored by atom
types.

the hAmph1 SH3 domain, similar to the rAmph2 SH3 domain,
has large areas of negative electrostatic potentials, which
explains why the hAmphl and rAmph2 SH3 domains prefer
PXRPXR sequences containing two positive charges.
Interactions between the hAmphl SH3 Domain and PL-
PRRPPRAA from MD Simulations. Time course of the total
energy relative to the initial snapshot is shown in Figure S4(a)
in the Supporting Information. The main chain root-mean-
square deviation (RMSD) compared with the starting structure
is shown in Figure S4(b), which indicates that the system
reaches equilibrium after about 800 ps. Analyses of the
trajectories taken from the MD simulations showed that there
was a significant motion of the peptide complexed with the
SH3 domain, especially the N- and C-terminal residues. The
21 snapshots extracted from the MD trajectory from 1.0 to 3.0
ns are superposed in Figure 4. We found that Pro at P, and
residues from position Py (Arg) to position P53 (Arg) were
restrained by the binding to the SH3 domain. In contrast, the
N- and C-terminal residues as well as Arg at P, exhibited great
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Figure 5. Schematic representation of interactions between peptide PLPRRPPRAA and hAmph1 SH3 produced using the Ligplot program
developed by Wallace et al.52 The average structure after minimization was used in the analysis. (a) only the side chains which have
strong interaction with SH3 are shown, (b) all ligand atoms are shown.

conformational flexibility as they were relatively unrestrained
by the binding.

To evaluate the contribution of each peptide residue to
binding, the total binding free energy of was decomposed to
residue—residue pairs (Figure 5, Figure S5, and Table S3).
Apparently the middle six residues of the ligand make signifi-
cant contacts with the hAmphl SH3 domain, while the C-
terminal Ala and the N-terminal Pro have little contribution
to binding. Moreover, the interactions are mainly between the
side chains of the peptide and the SH3 domain as there are
only two backbone/backbone H-bonds: one between the
backbone N atom of Leu at P; and Asp632 and the other
between the backbone carbonyl oxygen atom of Pro at P_, and
Trp 664 (Figure 5). These two hydrogen bonds are not very
stable during MD simulations.

Both prolines at P, and P, positions have strong interactions
with the protein. Three protein residues His631, Asn689 and
Phe690 form effective interactions with Pro at P, and the van
der Waals interaction is the dominant component (Table S3
in the Supporting Information). The interaction between Pro
at P_; and the protein is highly favorable (—7.09 kcal/mol).
Trp664 and Pro687 are very important to the strong binding
of this residue. Pro687 can form strong van der Waals interac-
tion with Pro at P_;, whereas both van der Waals and electro-
static interactions (including the electrostatic contribution from
solvation) are important to the binding between Trp664 and
Pro at P_,. In fact, the interactions between these two prolines
in peptide and the four protein residues, Phe690, His631,
Pro687, and Trp664, have been shown to be conserved in SH3
domains.
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The interaction between Arg at P, and SH3 is relatively weak
(Table S3). This residue can only form effective electrostatic
interaction with Asn689. In the modeled complex structure, the
side chain of the arginine points away from the protein and
therefore has less contribution to binding. Arg at Py can form
strong interaction with the SH3 domain (—22.88 kcal/mol in
Table S3). This arginine residue has effective interactions with
five SH3 residues: Phe633, Glu634, Glu640, Trp664, and Phe690.
As shown in Figure 5, arginine at Py can form two stable
hydrogen bonds with two carboxyl oxygen atoms in Glu640,
which was validated by the strong interaction between Arg at
Py and Glu640 (—14.97 kcal/mol). Glu634 can form strong
electrostatic interaction with arginine at Py (—19.91 kcal/mol),
but the strong electrostatic interaction was largely compensated
by the unfavorable electrostatic component of desolvation
upon binding. There exists a relatively weak hydrogen bond
between the carbonyl oxygen atom in Glu634 and arginine at
Py (Figure 5). The hydrophobic side chains of Phe633, Trp664
and Phe690 can make favorable van der Waals interactions with
the side chain of arginine at P,.

Even the backbone carbonyl oxygen atom of the proline at
P_, of the peptide can form a hydrogen bond with Trp 664,
this residue is exposed to solvent and is not as important as
the two prolines at P_; and P, to binding.

The arginine at P_3 of the peptide may contribute most to
the peptide/SH3 interactions. It can form effective interactions
with five SH3 domain residues, Asp639, Glu640, Asp659, GIn660,
and Trp664. Asp639 and Glu640 are more important than the
other three residues (—11.66 kcal/mol for Asp639 and —8.10
kcal/mol for Glu640) because of the stable hydrogen bonds
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ASP639

GLU6B40

ASPE659

Figure 6. H-bond network formed by Arg at P-3 in peptide and
three residues in Ahmp1 SH3. The protein residues are shown
in stick, and the ligand residue is shown in ball-and-stick. The
hydrogen bonds between protein and peptide are shown as
green dotted lines.

formed between these two resides and the peptide. In the
average complex structure obtained from the MD simulation,
three hydrogen bonds can be found between Arg at P—3 and
Asp639/Glu640 (Figure 5). Besides Asp639 and Glu640, the
interaction between Asp659 and Arg at P_3; is also very
significant (—4.56 kcal/mol). From the analysis of the MD
trajectories, it can be found that the OD1 atom in the carboxyl
group of the Asp659 is very close to the NH2 atom of the Arg
at P_s. The residue Asp639, Glu640, and Asp 659 form a nearly
isosceles triangle, with the Arg nitrogen at the plane of the
triangle formed by the Asp carboxyl carbons (Figure 6). The
binding site is thus remarkably well suited for interactions with
Arg and it is not surprising that five hydrogen bonds formed
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between Arg at P_3 and four carboxylate oxygens in Asp639,
Glu640 and Asp659.

CoMFA and CoMSIA Models. The CoMFA and CoMSIA
models (2.0 A grid) with different fields based on the AMBER
charge model are shown in Table 1. It shows that using steric
and electrostatic fields only, the quality of the CoMSIA model
(¢* = 0.580) was quite similar to the CoMFA model (q* = 0.587).
When the hydrophobic interaction is included, the predictive
power of the CoMSIA model (g? = 0.593) is slightly increased,
which indicates a contribution of the hydrophobic field to
peptide binding. Also, after adding the H-bond donor field, the
cross-validation coefficient of the 3D-QSAR was increased
significantly to 0.606, which indicates that H-bond donor
properties are important for peptide binding. However, inclu-
sion of the H-bond acceptor field does not improve the CoMSIA
model. Moreover, the inclusion of H-bond field does not
improve the predictive power of the CoMFA model. The best
3D-QSAR model was built using all four fields in CoMSIA
(g*> = 0.606).

For QSARs developed with CoMFA or CoMSIA, a shift in the
g* values may be often observed using different charge
models.>* % The CoMFA and CoMSIA models using three
different sets of partial charges are shown in Table 2. The
CoMSIA models show better regression results. For the three
CoMSIA models, all of them exhibit good statistical quality
between the predicted and experimentally determined values
of log(BLU). Considering that the internal predictive ability of
CoMSIA3 model in Table 2 is slightly higher than those of the
other models, Gasteiger—Marsili partial charges were used in
the subsequent studies.

The region focusing technique in the ‘Advanced CoMFA’
module in SYBYL was used to refine the model by increasing
the weights for those lattice points most pertinent to the model
and all 3D-QSAR models show obvious improvement. The
improvement of the CoOMFA model with the steric, electrostatic

Table 1. CoMFA and CoMSIA Models Using the Different Combinations of Fields based on the AMBER Charge Model
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CoMFA1 CoMFA2 CoMSIA1 CoMSIA2 CoMSIA3 CoMSIA4
q° 0.587 0.593 0.580 0.593 0.606 0.604
2 0.827 0.793 0.794 0.768 0.766 0.775
standard error 0.375 0.406 0.407 0.431 0.432 0.424
F 153.577 250.723 187.722 216.245 214.255 225.415
n 6.000 3.000 4.000 3.000 3.000 3.000
grid spacing 2.000 2.000 2.000 2.000 2.000
fraction
steric 0.473 0.165 0.242 0.155 0.096 0.086
electrostatic 0.527 0.193 0.758 0.496 0.326 0.281
hydrophobic 0.349 0.216 0.191
HB donor 0.274 0.361 0.324
HB acceptor 0.368 0.117
Table 2. Influence of Different Charge Models to CoMFA and CoMSIA Model (grid spacing: 2.0)

CoMFA1 CoMFA2 CoMFA3 CoMSIA1 CoMSIA2 CoMSIA3
charge model Gasteiger— Marsili Gast—Huck MMFF94 Gasteiger— Marsili Gast—Huck MMFF94
q° 0.600 0.599 0.598 0.618 0.612 0.614
? 0.804 0.805 0.805 0.766 0.762 0.767
standard error 0.396 0.395 0.395 0.433 0.436 0.432
F 268.765 270.108 269.460 213.692 209.090 215.044
n 3.000 3.000 3.000 3.000 3.000 3.000
grid spacing 2.000 2.000 2.000 2.000 2.000 2.000

fraction

steric 0.177 0.177 0.176 0.102 0.107 0.105
electrostatic 0.132 0.132 0.136 0.275 0.257 0.263
hydrophobic 0.234 0.239 0.237
HB donor 0.293 0.294 0.292 0.389 0.397 0.395
HB acceptor 0.397 0.398 0.396
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Table 3. CoMFA and CoMSIA Models after Region Focusing
CoMFA1 CoMFA2 CoMSIA1 CoMSIA2 CoMSIA3 CoMSIA4
q° 0.620 0.633 0.606 0.625 0.636 0.631
12 0.750 0.746 0.796 0.756 0.767 0.729
standard error 0.449 0.450 0.407 0.443 0.425 0.466
F 145.900 191.827 125.762 150.865 160.302 175.777
n 4.000 3.000 6.000 4.000 4.000 3.000
grid spacing
fraction
steric 0.566 0.227 0.412 0.239 0.142 0.128
electrostatic 0.434 0.171 0.588 0.370 0.283 0.193
hydrophobic 0.392 0.246 0.208
HB donor 0.257 0.329 0.350
HB acceptor 0.345 0.122

and H-bond fields appeared to be higher than that with the
steric and electrostatic fields. After using region focusing, the
CoMSIA model was the best according to several statistical
parameters. Leave-one-out cross-validation of the PLS analysis
of the model resulted in a model with g? of about 0.64 using
four principle components. The non-cross-validated PLS analy-
sis yields a model with a higher 72 of 0.767 with a low standard
error of estimate (SD) of 0.43 (Table 3). Figure 7 shows the
linear correlation between the experimental affinities and the
predicted values of the peptides in the training set.

The predictability of the models derived by CoMFA and
CoMSIA is the most important criteria to assess the two
methods. The best COMFA and CoMSIA models were applied
to predict the binding of the 684 peptides in the test set (Table
S2 in the Supporting Information). By comparing the results
of the best CoOMFA and CoMSIA models, one can see that the
best CoMSIA models also possesses good predictive ability (7prea
= 0.79) with the average absolute error of 0.41 log units across
arange of 3.87 log units, which is better than the prediction of
the best CoMFA to the test set (rrea = 0.76 and the average
absolute error of 0.42 log units). The binding values (logBLU),
the predicted values, and the prediction error using the best
CoMSIA model for the test set are given in Table S2 the
Supporting Information. For the 684 peptides in the test set,
454 have absolute prediction errors smaller than 0.5 (66.4%),
193 absolute prediction errors between 0.5 and 1.0 (28.2%), 28

Predicted logBLU

0.5 F“———————————T———
5 20 25 30 35 40 45

Experimental logBLU

Figure 7. Comparison of experimental logBLU with predicted
logBLU using the best COMSIA model for the peptides in the
training set.
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absolute prediction errors between 1.0 and 1.5 (4.1%) and 9
peptides with absolute prediction errors larger than 1.5 (1.3%).
Totally, about 95% peptide can be well predicted with absolute
prediction errors smaller than 1.0. The correlation between the
predicted and measured log(BLU) values is presented in Figure
8.

CoMSIA Contour Maps. The CoMSIA steric, electrostatic,
hydrophobic, and H-bond donor fields were plotted as three-
dimension colored contour maps in Figure 9. The steric contour
map for the best COMSIA model depicts regions around the
molecules where enhanced SH3 binding affinity is associated
with increasing (green) and decreasing (yellow) steric bulk (see
Figure 9a). The steric contours show that there are two sterically
favorable regions: one is around the side chains of Lys at P;,
and the other is located near the terminal of the side chain of
Arg at P_;. In fact, the presence of these two regions is
supported by the MD simulations. The side chain of Lys at P,
is external and thus large group is allowed here and does not
impair the SH3/peptide interaction. The hAmph1l SH3 domain
has relatively large space at site 3, which can accommodate
large residues, such as Arg, Lys, and Phe. Moreover, in Figure
9a, there are two unfavorable regions: the large one is close to
Pro at P, and the small one is close to the region between Pro
at P, and Lys at P_,. These large yellow regions indicate that
additional steric interaction in these regions would lead to a
decreased binding. For example, Pro at P, forms close contact

Predicted logBLU

experimental logBLU

Figure 8. Comparison of experimental logBLU with predicted
logBLU using the best COMSIA model for the peptides in the test
set.
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Figure 9. CoMSIA contour maps for (a) steric field, (b) electro-
static field, (c) hydrophobic field and (d) H-bond donor field.

with His631 and Phe690, and large group at this position should
destroy the surface complementarity between peptide and SH3.

In the electrostatic contour maps (Figure 9b), peptides
orienting side chains with positive electrostatic potentials into

Figure 10. Alignment between the CoMSIA H-bond donor
contour maps and the average structure of SH3 after minimiza-
tions. Peptide ligand was shown as green stick.

areasin red will enhance peptide binding, as well as the side
chains with negative electrostatic potentials into areas in blue.
In Figure 9b, there are three blue areas: one is at the end of
Arg at P_3, one is close to area between reside at P; and Arg at
Py, and the other one is close to the C terminal of the peptide.
The blue areas are consistent with the distribution of electro-
static potentials of the SH3 binding potential. The residues at
Py, P_3, or P_5 prefer to form strong electrostatic interactions
with SH3. It is interesting to find that there are two red areas
near two blue areas. In fact, in many cases, the blue and red
regions are adjacent to each other.% It is not very surprising
because a positive and negative charge group often are adjacent
to each other. There is large red area around the side chain of
Arg at Py, which is not straightforward to be interpreted.

The maps of hydrophobic properties are shown in Figure
9c. Yellow and black meshes indicate regions where hydro-
phobic or hydrophilic groups are favorable to peptide binding.
In Figure 9c, there are three obvious hydrophobic favorable
areas. These three yellow areas are located near the side chains
of Arg’s at Py, Py, and P_3, which appears to contradict the MD
results. From MD, we found that two residues at Py and P-3
can form strong electrostatic interaction with the SH3 domain.
The improper output of the CoMSIA model may be caused by
the CoMSIA algorithm. In our data set, the residues at P;, Py,
and P-3 are usually Arg or Lys. The terminal carbon atom of
the side chain of Arg or Lys has significant positive charges,
but CoMSIA may identify these atoms as hydrophobic centers.
Although the hydrophobic distribution in Figure 9c is unrea-
sonable, we believe that the hydrophobic property of the
peptide should still be effectively considered by CoMSIA.

H-bond donor field is shown in Figure 9d, where cyan mesh
indicates regions where hydrogen bond acceptor groups on
SH3 will enhance the binding. In Figure 9d, there are three cyan
areas near Arg at Py and Arg at P—3. To directly compare the
CoMSIA contour map with the structure of the hAmph1l SH3
domain, residues in the SH3 domain within 5 A of peptide
ligand were merged to the CoMSIA contour map (Figure 10).
In Figure 10, it is very clear that two cyan areas are superim-
posed with the side chain of Glu640 and the side chain of
Asp639, and the other small one is close to the side chain of
Asp659, which is well consistent with the results from MD
simulations. The MD simulations have shown these two Arg’s
can form strong hydrogen bonds with these residues in SH3.

When using the CoMSIA model to predict affinities on the
test set, we found that 37 of the peptides had poor predictions.
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Table 4. Peptides with Absolute Prediction Errors Larger than 1.5 log Units
protein logBLU logBLU logBLU
no. peptide sequence name (exp) (pred)* residue® (pred)” residue”
A37 RPPSRPPSRP Q99700 4.37 2.54 1.83 2.69 1.68
B30 RPPRRPPWGR Q99785 4.00 1.86 2.14 2.46 1.54
B32 GFPRRPPPRG Q9UER3 3.81 2.28 1.53 2.23 1.58
B42 LLPRRPPPRV 015056 3.65 2.25 1.40 2.12 1.53
B52 EGPRRPPPRP Q9BVHS 3.52 2.08 1.44 1.95 1.57
B53 AFPRRPPPRG QI9Y5N2 3.79 2.27 1.53 2.19 1.60
B54 VVPRRPPAHI QINTY8 3.79 2.39 1.41 2.29 1.50
B211 GPPPRPPPRQ Q9HCU4 4.25 2.16 2.09 2.42 1.83
B448 VAPRRPRDAV 043541 3.56 1.81 1.75 1.92 1.64
B460 RPFRRPNANF QINVWS8 3.60 1.40 2.20 1.56 2.05

@ Prediction based on CoOMFA2 model in Table 5. ? Prediction based on CoMSIA3 model in Table 5.

Among these 37 peptides, 9 peptides have absolute prediction
errors larger than 1.5 log units. There are many reasons that
could have caused these poor predictions. First, since the
energy estimate can be noisy, there may have been an inac-
curate binding energy estimate by experiment.?? Second, the
binding characteristics of a peptide in the binding site cannot
be well represented by a single conformation of a peptide. The
MD simulation results have shown that there was significant
conformational flexibility of the peptide in the binding pocket.
Therefore, a single conformation of the peptide cannot describe
the dynamic property of the peptide upon binding. Third, the
side chain installation and molecular mechanics minimization
may not produce the correct binding conformation of a peptide
in the binding site. The basic assumption in CoMFA or CoMSIA
is that the modeled conformation for molecular alignment is
the biologically active one. For flexible ligands, especially
peptides, this assumption may not be the case.

Table 4 shows the peptides with prediction errors larger than
1.5. One can see that the binding affinities of all these peptides
are underestimated by the CoMSIA model. It implies that the
CoMSIA model cannot fully represent some of the chemical
features that contribute to peptide binding. Among these 10
peptides, six share following the common feature: an arginine
at P-4 and a small residue (proline or serine) at P_3. These
common features can be defined as the motif PXRPXsR, where
s represents small residues. The peptide motif is not fully
consistent with the results from MD simulations. Our previous
MD simulations show that Arg at P_3 is the most important
contributor to the binding. However, all of these six peptides
do not have Arg at P_s. It seems that these six peptides may
have different binding conformations in the binding pocket
compared with the peptide PLPRRPPRAA. To investigate the
interaction between the SH3 domain and the peptides with the
motif PXRPXsR, we performed a 3 ns MD simulation for the
SH3/GFPRRPPPRG complex. The initial structure for MD
simulation was also generated by side chain installation and
molecular mechanics minimization. We used the same simula-
tion condition in our previous MD simulation for the SH3/
PLPRRPPRAA complex.

The MD simulations of an example peptide (GFPRRPPPRG)
from these six poorly predicted peptides suggested that they
adopt a different conformation from the rest of the peptides
in the test set. According to Figure S6, the total energy becomes
stable after about 400 ps but RMSD does not reach plateau
until about 700 ps. The contribution of each residue in the
peptide GFPRRPPPRG to binding is summarized in Table S4
in the Supporting Information. Upon examining the differences
of the binding conformations of the peptides PLPRRPPRAA and
GFPRRPPPRG (Tables S3 and S4 in the Supporting Informa-
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Figure 11. Schematic representation of interactions between
peptide GFPRRPPPRG and hAmph1 SH3 produced using the
Ligplot program developed by Wallace et al.?® The average
structure after minimization was used in analysis.

tion), it was found that the binding modes for these six residues
from P, to P_, in GFPRRPPPRG are quite similar to those in
PLPRRPPRAA. However, for the three residues from P_3 to P_s,
these two peptides show some differences. The proline at P_3
in GFPRRPPPRG cannot form any effective interaction with
protein, whereas Arg at P_, can form strong interactions with
three residues in SH3, including Ala658, Asp659 and Asp661.
In the average structure of SH3/GFPRRPPPRG complex, we find
that Arg at P_, can form three hydrogen bonds with Ala658
and Asp659 (Figure 11). Figure 12 shows the alignment of
average structures of SH3/PLPRRPPPAA and SH3/GFPRRPP-
PRG. As shown in Figure 12, the backbone structures of these
four residues of PLPRRPPPAA (red peptide shown in Figure 12)
and GFPRRPPPRG (green peptide shown in Figure 12) at the C
terminal have some differences. Compared with PLPRRPPPAA,
three residues from P, to P_3 in PLPRRPPPAA move away from
the binding surface of the hAmph1 SH3 domain (the direction
is labeled by an arrow). Moreover, the conformation of several
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Figure 12. Alignment of average structures of SH3/PLPRRPPRAA
and SH3/GFPRRPPPRG. SH3/PLPRRPPRAA is shown in red and
SH3/GFPRRPPPRG in green. The residues in SH3 are represented
in ball-and-stick, and those in peptides in stick.

residues in the n-Src loop of the SH3 domain shows significant
difference when interacting with PLPRRPPPAA and GFPRRP-
PPRG. To form an interaction with Arg at P_, in GFPRRPPPRG,
the side chain of Asp659 rotated about 180° and he overall
structure near the Asp of SH3 is quite different between
interacting with PLPRRPPPAA and with GFPRRPPPRG. From
MD simulations, it is clear why the GFPRRPPPRG have rela-
tively high binding interaction with SH3 although there is no
interaction with Arg at P-s: the interaction between SH3 and
Arg at P, can compensate the loss of binding energy by the
substitution of Arg or Lys at P_s.

The underlying reason for the poor prediction of peptides
with PXRPXsR motif is therefore that the PXRPXsR motif has
different binding conformation compared with the PX(R/K)-
PX(R/K) motif. We believe that for the hAmphl SH3 domain,
there may be a number of binding modes. The hAmph1 SH3
domain has long and flexible n-Src domain and it may adjust
the conformation easily to adopt peptides with other motifs,
especially these peptides with positively charged C-terminal
residues because the hAmph1 SH3 domain has strong negative
potentials near the RT loop and n-Src loop.

Conclusion

Homology modeling and MD simulations were applied to
determine the structure of a strong binding peptide complexed
with the human amphiphysin-1 SH3 domain. The interaction
between the peptide PLPRRPPRAA and the SH3 domain were
systematically analyzed and the key binding forces were
identified. On the basis of the molecular alignment and the
modeled structure from homology modeling and MD simula-
tions, the 3D-QSAR techniques CoMFA and CoMSIA were
applied to study the relationship between structure and binding
to 884 10-residue peptides with experimental binding data for
the human amphiphysin-1 SH3 domain. The preferred and not-
preferred areas of steric bulk, electron density, local hydro-
phobicity and hydrogen-bond forming properties for the
binding peptides were defined. Most CoMSIA contour features
can be well explained by the interacting information discovered
by the MD simulations.
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To investigate the reason the CoOMSIA model cannot predict
well for some peptides with the PXRPXsR motif, an MD
simulation was performed on the GFPRRPPPRG/SH3 complex.
The simulations showed that the peptide GFPRRPPPRG could
adopt a binding conformation different from the PLPRRPPRAA.
Since the calculated results from MD simulations explain why
the CoMSIA model gives poor predictions for several peptides,
the combination of ligand-based and receptor-based modeling
is proposed to be a powerful approach to predict the binding
affinities of peptides to SH3 domain and to analyze the binding
features of peptides in the SH3 binding pocket. In the future,
the ability to predict peptide binding using a CoMSIA model
may enable us to analyze human genomes, identifying the most
potential binding partner of the human amphiphysin-1 SH3
domain. Moreover, although we presently focus on the binding
between peptides and the hAmphl SH3 domain, the method
we have described may be useful for other peptide/protein
systems, such as the other SH3 domains as well as other
modular signaling domains, e.g., SH2, WW, and PDZ domains.
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