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                            Structure – ADME relationship: 
still a long way to go?      
     Tingjun     Hou    †    &    Junmei   Wang   
  † University of California at San Diego, Department of Chemistry and Biochemistry, 
Center for Theoretical Biological Physics, 9500 Gilman Drive, La Jolla, CA, USA                           

  Background : Theoretical models for predicting absorption, distribution, 
metabolism and excretion (ADME) properties play increasingly important 
roles in support of the drug development process.  Objective : We briefly 
review the  in silico  prediction models for three important ADME properties, 
namely, aqueous solubility, human intestinal absorption, and oral bio-
availability.  Methods : Rather than giving detailed descriptions of the ADME 
prediction models, we focus on the discussions of the prediction accuracies 
of the  in silico  models.  Results/conclusion : We find that the robustness 
and predictive capability of the ADME models are directly associated with 
the complexity of the ADME property. For the ADME properties involving 
complex phenomena, such as bioavailability, the  in silico  models usually 
cannot give satisfactory predictions. Moreover, the lack of large and high-
quality data sets also greatly hinder the reliability of ADME predictions. 
While considerable progress has been achieved in ADME predictions, many 
challenges remain to be overcome.  

  Keywords:   ADME  ,   bioavailability  ,   intestinal absorption  ,   QSPR  ,   solubility  

 Expert Opin. Drug Metab. Toxicol. (2008) 4(6):1-12     

  1.   Background 

 The importance of optimizing the absorption, distribution, metabolism 
and excretion (ADME) properties for potential drug candidates have been 
widely recognized   [1] . The success of a drug is determined not only by good 
efficacy and specificity, but also by having acceptable ADME and toxicity 
properties (ADMET)   [2] . Traditionally, in the drug discovery process, the efficacy 
and specificity of a drug candidate are usually evaluated at the early stage, 
then the ADMET properties are considered at a relatively late stage   [3] . The 
traditional ‘serial’ diagram of drug discovery usually results in a high rate of 
attrition in the later stages of drug discovery, where the costs increase dramatically. 
Analysis of the failure of new chemical entities (NCEs) shows that the poor 
ADMET properties are the major cause of failure of new pharmacologically 
promising compounds   [4] . 

 The traditional diagram began to change in the early 1990s. Pharmaceutical 
scientists try to optimize the ADMET properties early in the drug discovery 
process, as well as efficacy and specificity as a ‘parallel’ diagram. A recent analysis 
shows that the attrition rate caused by the adverse pharmacokinetic and 
bioavailability aspects has been greatly decreased   [5] . Overall, the failure of 
developing candidates due to improper ADME/formulation, toxicology, and safety 
issues decreased from approximately 60% in 1991 to around 45% in 2000   [5] . 

 Over the last 10 years, a number of high-throughput (HT) experimental 
techniques have been developed to evaluate the ADME properties, such as the 
Caco-2 permeability screening based on the 3-day Caco-2 culture system   [6] , 
high-throughput kinetic solubility assay   [7,8] , metabolic stability screening using 
microsomes or hepatocytes   [9] , and liquid chromatography-mass spectroscopy 
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(LCMS) and fluorogenic assays through cytochrome 
cYP inhibition for metabolism related to drug–drug 
interactions   [10,11] . Although much progress has been made 
in HT ADME experimental assays, compared with high-
throughput screening (HTS) activity assays or combinatorial 
synthesis, the ADME experiments still have low throughput 
capacity, thus limiting the application of these assays to only 
a fraction of compounds in drug discovery. Therefore, 
 in silico  prediction models for the ADME properties are 
urgently needed to alleviate the bottlenecks in ADME 
experiments.  In silico  models have great potential to predict 
 in vitro  and  in vivo  ADME properties quickly to assist in 
prioritizing the large numbers of compounds, and no 
experiments are necessary. 

 The ADME predictions at the early stage usually focus on 
some simple ADME or ADME-related properties, such as 
octanol-water partitioning coefficient (log P ), apparent 
partition coefficient (log D ), intrinsic solubility (log S ), etc. 
As a result of the increase in available experimental data in 
the literature, considerable efforts have been made to predict 
more ‘complex’ ADME properties, such as human intestinal 
absorption, blood–brain partitioning, oral bioavailability, 
clearance, volume of distribution, and metabolism. The 
ADME properties for which the prediction models have 
been developed are shown in  Figure 1 . In recent years, an 
increasing number of  in silico  models for predicting ADME 
properties have been reported   [12] , including solubility   [13-15] , 
Caco-2 permeability   [15,16] , human intestinal absorption   [14-18] , 
oral bioavailability   [14,17] , blood–brain partitioning   [16,19] , 
 P -glycoprotein-mediated transport   [14,20] , plasma-protein 
binding   [12] , metabolism   [21] , volume of distribution   [12] , 
clearance   [12] , and even half-life   [12] . Meanwhile, a number 
of computational software systems that can predict a range 
of ADME properties have been released (see  Table 1 ). 

 Quantitative structure–property relationship (QSPR) 
approaches have been widely applied for modeling most 
ADME properties. Three essential components responsible 
for the quality of an ADME prediction model – namely, the 
data set to be used to generate the model; the descriptors of 
molecular structures to be used to characterize the properties 
of the molecule and to be correlated with the experimental 
data; and the statistical techniques to generate the model – 
have been discussed extensively   [15,16,22] . The QSPR 
approaches simply construct the relationships between the 
molecular structures and the ADME properties, and do not 
necessarily know the underlying mechanism of an ADMET 
property. In contrast, molecular modeling approaches 
have been used to investigate the possible underlying 
molecular mechanism of a specific property or to understand 
the potential interactions between the small molecules 
and proteins involved in ADME processes by using 
molecular mechanics, molecular dynamics, pharmacophore 
modeling, molecular docking, homology modeling, or even 
quantum mechanics calculations. So far molecular modeling 
approaches in ADME prediction have only been applied 

on very limited ADME properties, especially metabolism 
related to cytochrome P450s. 

 Since a lot of  in silico  models for ADME predictions 
are available, two questions may be raised: what are the 
prediction accuracies of these models, and can they be 
effectively used in the pharmaceutical industry? In this 
review, the  in silico  prediction models for three representative 
ADME properties are reviewed, which include solubility, 
human intestinal absorption (HIA), and oral bioavailability. 
Rather than giving detailed descriptions of the ADME pre-
diction models, we focus mainly on the prediction accuracies 
of the  in silico  models. It should be noted that the ADME 
prediction models discussed here were developed using the 
traditional QSPR approaches. In the recent past, physio-
logically based pharmacokinetic (PBPK) models have 
received a lot of attention because they may give us valuable 
information on how the various factors influence PK   [23] . 
PBPK models were not discussed here because this group 
of models usually needs extra physiological parameters 
from experiments and cannot be developed solely from 
molecular structures.  

  2.   Prediction of solubility 

 The solubility of organic molecules in water has a significant 
impact on many ADME-related properties of drugs, such 
as absorption, distribution, transport and eventually 
bioavailability   [24] . The solubility of a neutral compound 
or of a compound in its non-ionized form is defined as 
the intrinsic solubility and normally represented as log S , 
where  S  is the concentration of the compound in mol/l in 
a saturated aqueous solution in equilibrium with the 
most stable form of the crystalline material. In practice, 
about 85% of drugs have log S  between -1 and -5, 
and virtually none has a value < -6. Empirically, the 
log S  range of -1 to -5 for most drugs reflects a compro-
mise between the polarity necessary for reasonable aqueous 
solubility and the hydrophobicity necessary for acceptable 
membrane transport   [25] . 

 Solubility and intestinal absorption are two counterparts 
applied in the Biopharmaceutics Classification System 
(BCS)   [26] . According to the BCS, drug substances are 
classified as follows:  

 Class I: High permeability, high solubility. These compounds • 
are well absorbed, and their absorption secretion rate is 
usually higher than excretion.   
 Class II: High permeability, low solubility. The bioavailability • 
of these compounds is limited by their solubility.   
 Class III: Low permeability, high solubility. The absorption • 
is limited by the permeation rate, but the drug is solvated 
very fast.   
 Class IV: Low permeability, low solubility. These compounds • 
are usually not well absorbed over the intestinal mucosa, 
and a high variability is expected.    
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  Figure 1     .  In silico  prediction models for ADME properties.  The fi gure does not give a logical fl ow of the ADME studies, but attempts 
to group them roughly into different prediction models.    

  Table 1     . Popular commercial software available for predicting ADME and ADME-related properties.   

 Software  Company  p   K   a  log   P   log   D   Sol  HIA  C2  BBB  Bio  Mtb  Trp  PPB  Others 

Cerius2 Accelrys  √  √  √  √  √  √ 

Qikprop Schrödinger  √  √  √  √  √  √ 

ACD/labs ACD Labs  √  √  √  √ 

Volsurf Tripos  √  √  √  √  √  √ 

ADME Boxes PharmaAlgorithms  √  √  √  √  √  √  √  √  √ 

ADME Predictor Simulations Plus  √  √  √  √  √  √  √  √ 

KnowItAll Bio-Rad Lab  √  √  √  √  √  √  √  √  √ 

NorayMet ADME Noraybio  √  √  √  √  √  √  √  √  √ 

iDEA ADME LION Bioscience  √  √  √  √  √  √ 

PreADMET  √  √  √  √  √  √  √ 

ADME Collection Scitegic  √  √  √  √  √ 

Jchem ChemAxon  √  √  √ 

StarDrop Biofocus  √  √  √  √  √  √  √  √  √  √ 

ADMEWORKS Fujitsu  √  √  √  √  √  √ 

Meta Multicase  √ 

MetaSite Molecular Discovery  √ 

   BBB: Blood–brain barrier permeability; Bio: Oral bioavailability; C2: Caco-2 permeability; Mtb: Metabolism; PPB: Plasma–protein binding; Sol: Solubility; 
Trp: Carrier-mediated transport.   
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 It is worth mentioning that the FDA BCS guidance, based 
on the current definition of solubility, is not reliable enough 
for all drugs, especially many true BCS class I drugs   [27,28] . 

 Until now, a lot of models have been proposed for 
the prediction of solubility. These models can be roughly 
divided into three categories: experiment-related models, 
QSPR-based models, and atom/group contribution models. 

  2.1   Experiment-related models 
 The models in the first category calculate aqueous solubility 
using one or several experimental physicochemical properties 
such as partition coefficient, melting points, boiling points, 
or molar volumes; for example, the general solubility 
equation (GSE) proposed by Yalkowsky and co-workers   [29,30] . 
GSE related the molar intrinsic solubility ( S  w ) to the Celsius 
melting point ( mp ) and the octanol partition coefficient 
(log P ) by the following simple equation: 

  (1) 
log 0.5 0.01( 25) logwS mp P= − − −  

 GSE has been shown to produce reasonable predictions 
for a wide variety of compounds. These methods require 
the experimental values for  mp , so they are not applicable 
to compounds not yet synthesized or isolated. Therefore, 
these methods only have limited application domains.  

  2.2   QSPR-based models 
 The second category of models tries to construct the 
prediction models by correlating solubility with a diverse set 
of descriptors such as physiochemical descriptors and 
molecular properties by various statistical techniques. 
The methods developed by Huuskonen  et al.    [31] , 
Abraham  et al.    [32] , Jorgensen  et al.    [33] , McElroy  et al.    [34] , 
McFarland  et al.    [35] , Liu  et al.    [36] , Tetko  et al.    [37] , 
Engkvist  et al.    [38] , Yan  et al.    [39] , Butina  et al.    [40] , 
Goller  et al.    [41] , among others, belong to this class. 

  Equation 2  is the solubility prediction model developed 
by Abraham and Le   [32] . The model can give good prediction 
for 65 compounds in the test set, indicated by a standard 
deviation ( SD ) value of 0.496: 

  (2) 
p a

b a b

= − + +

+ − × −

= = = = =

∑
∑ ∑ ∑

2 2 2

2 2 2

2

log 0.510 1.020 0.813 2.124

4.187 3.337 3.986

( 594, 0.562, 0.918, 1089, 0.409)

H H

H H H
x

S R

V

n SD r F AAE  

 In  Equation 2 , 2
Hp  is the dipolarity/polarizability; 2

Ha∑  

is the overall or summation hydrogen bond acidity; 2
Hb∑  

is the overall or summation hydrogen bond basicity; xV  is 
the McGowan characteristic volume;  SD  is the standard 
deviation;  r  2  is the squared correlation coefficient;  F  
is  F -value of the Fisher’s exact test;  AAE  is the average 

absolute error. The term 2 2
H Ha b×∑ ∑  was introduced to 

deal with hydrogen bond interactions between acidic and 
basic sites in the solid or liquid. 

 Another example of solubility prediction model developed 
by Jorgensen and co-workers is shown in  Equation 3    [33] : 

  (3) 
= + 0.6498ΗΒΑ + 2.192#

− − +1.181

( = 1.50, = = =

1/2

2 2

log 0.3158ESXL C amine

1.759#nitro 161.6HBAC.HBDN /SASA

0.88, 0.87, 0.72)

S

n r q rmse  

 In  Equation 3 , ESXL is the averaged solute-water 
Lennard-Jones (ESXL) interaction energies; HBDN and 
HBAC are the numbers of H-bond donors and acceptors of 
solute, respectively; #amine is the number of non-conjugated 
amine groups; #nitro is the number of nitro groups; 
SASA is the solvent-accessible surface area;  q 2   is the pre-
dictive squared correlation coefficient based on leave-one-out 
cross-validation;  rmse  is the root mean square error. 

 The solubility prediction model developed by Huuskonen 
needs to be emphasized here because the data set reported 
by Huuskonen   [42]  has been widely used by other researchers 
to develop solubility prediction models. The ‘Huuskonen’ 
data set includes 1297 organic compounds extracted from the 
AQUASOL database and SCR’s PHYSPROP database   [42] . 
Huuskonen divided the whole data set into a training set 
of 884 compounds and a randomly chosen test set of 
413 compounds. Molecular connectivity, shape, and atom-
type electrotopological state (E-state) indices were used as 
structural parameters. A 30 – 12 – 1 artificial neural network 
using 24 atom-type E-state indices and six other topological 
indices gave the best performance, and better than the model 
using the multiple linear regression. The model can give 
a predictive  r  2   =  0.92 and  SD   =  0.60 for a test set of 
413 compounds and a  SD   =  0.63 for a 21-compound 
test set. Please note that the test set of 413 compounds 
was used for controlling the training process of artificial 
neural network, and thus it is not the ‘real’ test set. So the 
Huuskonen’s model was only validated by the 21-compound 
test set. Obviously, 21 is a limited number and a larger 
external test set is necessary to give more extensive evaluation 
of the predictive capability of the model. 

 The practical superiority of this type of method is that it 
does not require the knowledge of any experimental data of 
compounds, because all descriptors needed are calculated 
directly from a two-dimensional (2-D) or three-dimensional 
(3-D) molecular structure. However, this class of methods 
has its inherent deficiencies. First, the methods usually 
require many molecular descriptors, which may be difficult 
to obtain or can only be calculated by using a commercial 
software. For example, in the work of Engkvist  et al. , the 
authors used a total of 63 physicochemical and topological 
descriptors   [38] . The dependence of the descriptors calculated 
from other theoretical models poses some problems for 
estimating the solubility of a molecule using the models in 
the public domain and developing a program or scripts to 
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estimate solubility automatically. Secondly, the prediction 
accuracy of the QSAR model is closely related to the 
accuracy of descriptors used in the model. In addition, the 
relationship between the descriptors and the aqueous 
solubility is usually not straightforward.  

  2.3   Atom/group contribution models 
 The third class of models for predicting aqueous solubility 
is based on atom or group contribution. In principle, the 
atom/group contribution models are QSPR-based models. 
They allow the approximate calculation of solubility by 
summing up the contributions of relevant atoms or functional 
groups of compounds using  Equation 4 : 

  (4) 

0log i i
i

S a a n= + ∑
 

 The count  n i   for atom or functional group type  i  
is obtained from two-dimensional structures of molecules; 
the contribution  a i   for atom or functional group type  i  
is obtained by regression analyses. The  n i   can be replaced 
with solvent accessible surface areas (SAS) to upgrade the 
models from 2D to 3D. 

 The methods proposed by Nirmalakhandan  et al.    [43] , 
Suzuki  et al.    [44] , Klopman  et al.    [45,46] , Hou  et al.    [24] , and 
Wang  et al.    [47]  belong to this category. Among these, the 
Klopman’s model and the Hou’s model are widely used. 
The Klopman’s model, based on a set of 118 functional 
groups, leads to a squared correlation coefficient of 0.95 
and an average absolute error of 0.50 log unit   [46] . In 2004, 
Hou and co-workers developed an atom contribution 
model   [24] . In this model, 76 atom types were used to 
classify atoms with different chemical environments, and two 
correction factors, the hydrophobic carbon and the square 
of molecular weight, were used to account for the inter-/
intra-molecular hydrophobic interactions and bulkiness 
effect. The contribution coefficients of atom types and correc-
tion factors were generated by a multiple linear regression 
using a learning set consisting of 1290 organic compounds. 
The obtained linear regression model possesses good 
statistical significance with  r  2   =  0.92,  SD   =  0.61, and 
 AAE   =  0.48. For the 21 tested compounds, a predictive 
 r  2   =  0.88,  SD   =  0.84, and  AAE   =  0.52 were achieved. When 
coming to aqueous solubility prediction of a 21-molecule 
test set used by Huuskonen, this model achieved a very 
good accuracy, and it is comparable to or better than most 
of the published models based on molecular descriptors. In 
another test, the Hou’s model gave better performance than 
the Klopman’s group contribution model in predicting a test 
set of 120 molecules. Atom/group contribution methods 
may be the most practical ways of estimating aqueous 
solubility because they do not need any molecular descriptors 
based on other theoretical models. Moreover, this class of 
methods only needs to count the occurrence of functional 
groups in a molecule, so they are extremely time-saving.  

  2.4   Prediction accuracies of solubility 
 Since there are many solubility prediction models available, 
it is interesting to compare the performance of these models. 
The comparison of different prediction models is usually 
assessed by the 21-compound test set used by Huuskonen   [13] . 
It is obvious that this kind of comparison, based on a small 
test set, is not reliable. 

 Recently, Kühne and co-workers reported a very interesting 
study on model comparison and selection   [48] . The authors 
compared the performance of seven models using an 
in-house data set of 1876 compounds. The data set consists 
of thoroughly validated experimental values for the water 
solubility at 25 ° C of 1876 pure organic chemicals taken 
from an in-house database. The seven models include the 
Meylan’s model   [49] , the Klopman’s model   [46] , the Marrero’s 
model   [50] , the Hou’s model   [24] , the Huuskonen’s model   [51] , 
the Tetko’s model   [37] , and the Abraham’s model   [32] . 
All seven models were developed based on 2-D descriptors, 
and do not require the melting-point in case of solids. 

 According to the calculation results, among all these 
models, only the Hou’s model was formally applicable to 
all compounds, while there were 93 compounds having 
missing fragments for the Marrero’s model. The overall best 
statistics were achieved by the Meylan’s model in term of 
the predictive squared correlation coefficient ( r  2   =  0.83). 
The prediction performance of the Hou’s model ( r  2   =  0.82) 
was pretty close to the Meylan’s model. The Abraham’s 
model ( r  2   =  0.34) was inferior to all other models, 
probably because its fragment scheme to predict the 
linear solvation–energy relationship (LSER) parameters 
from molecular structure was not ideal. Both the Huuskonen’s 
and the Abraham’s models yielded individual prediction 
errors > 1.0 log units. However, the other five methods 
also produced individual prediction errors > 3 log units. 
So according to Kühne’s report, we can give a rough 
estimation of the prediction accuracies for solubility: 
the best prediction model (the Meylan’s model or the 
Hou’s model) can give a standard error < 0.9 log unit.   

  3.   Prediction of human intestinal absorption 

 Almost all the biological procedures involved in crossing 
biological membranes have a similar mechanism, such as the 
drug permeability through the barrier of the gastrointestinal 
tract, the drug permeability through the blood–brain barrier, 
and the drug permeability through the Caco-2 monolayers. 
The major route for the drug permeability through the 
barrier, passive diffusion, is driven by a concentration gradient. 
Two types of passive diffusion mechanisms exist: paracellular 
transport and transcellular transport. In addition to passive 
diffusion, some molecules can be transported by the active 
transporters, which include both active carrier systems such 
as the monocarboxylic acid carrier (which transports salicylic 
acid) and efflux systems such as  P -glycoprotein. For both 
intestinal epithelium and the blood–brain barrier, the 
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transcellular passive diffusion is more important, and thus 
the prediction of drug absorption and permeability 
concentrates on this pathway. Here we review the most 
important transport process: permeability and absorption 
through the barrier of the gastrointestinal tract. Given 
the high similarity of all these biological barriers, 
the methods and the descriptors used for predicting all 
biological barriers are also similar. 

 In experiment, HIA is measured by fraction absorption, 
%FA, which is defined as the total mass absorbed divided 
by the given dose of the drug. The theoretical prediction 
of HIA was pioneered by the ‘rule-of-five’ proposed 
by Lipinski and co-workers   [8] . The rule-of-five defined 
several criteria for identifying compounds with possible 
poor absorption and permeability: molecular weight > 500; 
calculated log P  > 5 (CLOGP) or > 4.15 (MLOGP); number 
of hydrogen bond donors (OH and NH groups) > 5; and 
number of hydrogen bond acceptors (N and O atoms) > 10. 
Poor absorption and permeation are more likely to 
occur when any two of the above rules are satisfied. The 
disadvantage of the rule-of-five is that it can give only a 
rough classification of molecules, allowing the elimination 
of only a very limited set. 

  3.1    In silico  prediction models for HIA 
 When predicting HIA, 2-D and 3-D molecular descriptors 
have generally been used as variables to generate the 
prediction models   [16] . These descriptors define a variety of 
molecular properties, including lipophilicity, hydrogen 
bonding ability, molecular bulkiness, etc. Among these 
molecular descriptors ( Figure 2 ), polar surface area (PSA) 
and apparent partition coefficient (log D ) may be more 
important than the others   [16,17] . 

 In 1992, van de Waterbeemd and Kansy correlated PSA 
of a series of CNS drugs to blood–brain partitioning   [52] . 

Since then, PSA has become the most popular descriptor 
for the prediction of molecular transport properties. 
In 1997, Palm and co-workers found that an excellent 
sigmoidal relationship could be established between FA 
and PSA ( r  2   =  0.94) for a set of 20 drugs covering 
a wide range of %FA values in humans, and concluded 
that drugs that were completely absorbed (FA > 90%) 
had a PSA  ≤  61 Å 2 , while drugs that were < 10% 
absorbed had a PSA  ≥  140 Å ( Figure 3A )   [53] . Hou 
and co-workers checked the relationships between 
topological polar surface area (TPSA) and %FA for 
553 molecules, and a much poorer correlation ( r  2   =  0.49) 
was observed ( Figure 3B ). According to the results reported 
by Hou and co-workers, applying the value of 61 Å 2 , 
230 compounds could be identified as possibly being 
well-absorbed. In these 230 compounds, 47 have an 
intestinal absorption < 90% and 17 < 80%. For the 
266 compounds with a TPSA > 61 and < 140 Å 2 , 
165 compounds have an intestinal absorption > 90% 
and five compounds < 10%. It is clear that the 
performance of the TPSA criterion is not reliable to 
identify poor absorption or good absorption, and HIA 
is certainly not only determined by PSA or TPSA. 
The discrepancy between the two models may be caused 
by the use of a very limited number of data set in Palm’s 
model, while Hou’s model used a much larger and more 
diverse data set. The similar observation of the poor 
performance of PSA for predicting drug absorption based 
on a diverse data set has been reported by others   [54] . For 
example, Grass and Sinko have described the difficulty 
in using PSA as a sole predictor of human absorption for 
an extensive data set in the iDEA ™  database   [54] . 

 The distribution coefficient, log D , is also a very important 
descriptor for the HIA prediction. The hydrophobic 
parameters (log P  or log D ) have long been known to be 

1-D descriptors

2-D descriptors

3-D descriptors

Element composition
Molecular weight

Polar surface area (PSA)
Molecular surface area
Molecular volume

Descriptor sets

Topological PSA (TPSA)
Number of H-bond acceptors
Number of H-bond donors
logP or logD
Solubility
Number of rotatable bonds
Number of molecular fragments
E-state index
Topological index

Abraham descriptors
Volsurf descriptors
Molsurf descriptors

  Figure 2     . The molecular descriptor used in the predictions of drug transport through biological barriers.  Molecular descriptors 
can be roughly divided into three categories: 1-D (one-dimensional), 2-D, and 3-D descriptors. 1-D descriptors are dependent only 
on the formula of a molecule; 2-D descriptors are obtained from the connectivity or graph of a molecule; 3-D descriptors contain the 
3-D geometric information of a molecule. Descriptor set usually includes a group of 2-D and 3-D molecular descriptors.    
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important for membrane permeation. Hou and co-workers 
studied the linear correlations between %FA and log D  
at pH  =  6.5, and a correlation with  r  2   =  0.40 could 
be observed, which is better than that between %FA and 
log P    [55] . In most studies, researchers like to use log P  instead 
of log D  because log P  is easier to compute. But log D  is 
undoubtedly more effective than log P  in the prediction of 
membrane permeability. Furthermore, log D  cannot be 
replaced by any other descriptors. Recently, Hou and 
co-workers studied the impact of 10 molecular descriptors 
for classifying the compounds into good and poor 
HIA absorption classes   [56] . Among these 10 descriptors, 
TPSA and predicted apparent octanol-water distribution 
coefficient at pH 6.5 (log D  6.5 ) showed better classification 
performance than the others. 

 These two important descriptors, PSA (or TPSA) and 
log D , are usually included in many HIA prediction models. 
Certainly, other descriptors are necessary to generate more 
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  Figure 3     . A. The polar surface area for 20 drugs  [53] ; and 
B. The topological polar surface area for 553 drugs, versus 
the experimental human fractional absorption  [55] .     

reliable prediction models; for example, the prediction model 
developed by Hou and co-workers ( Equation 5 )   [55] : 

  (5) 

− −= −
− < − > <

− 49.41 > + 0.17( + < − >

= = = =

rule of five

6.5

2
6.5 HBD

2

% 97.12 11.48

8.99 0.05 log 0.15 TPSA

log ) 3.76 7

( 435, 0.76, 12.70, 277.59)

FA N

D

D n

n r SD F  
 In  Equation 5 ,  N  rule-of-five  is the number of violations of 

rule-of-five, and  N  HBD  is the H-bond donor count. 
The spline terms used in  Equation 5  are denoted with 
angled brackets. For example, <  f  ( x ) –  a  > is equal to zero 
if the value of  f  ( x ) –  a  is negative; otherwise, it is equal to 
 f  ( x ) –  a . The regression with splines allows the incorporation 
of features that do not have a linear effect over their entire 
range. In  Equation 5 , the threshold value of TPSA is about 
50 Å, demonstrating that higher TPSA values produce 
low permeation, while the effect takes effect only when the 
PSA is > 50 Å 2 . A spline model for log  D  6.5  is also included 
in the prediction models. A threshold of 0.05 was found for 
log  D  6.5 , which means that log  D  6.5  values < 0.05 produce 
low permeation. The interpretation of the  n  HBD  term is 
not very straightforward. This term indicates that  n  HDB  
is unfavorable for HIA when it is > 7. This term may 
be used for the neutralization of the strong effect of 
TPSA and  N  rule-of-5 . 

 Besides the traditional descriptors, some other descriptor 
sets were applied in the HIA predictions, such as the 
Abraham descriptors   [57] , the Volsurf descriptors   [58] , and 
the Molsurf descriptors   [59] .  Equation 6  is the prediction 
model based on the Abraham descriptors to model the HIA 
data of 169 drugs reported by Zhao and co-workers   [57] . 
The obtained model possesses good correlation and external 
prediction ability. The stepwise regression analysis showed 

that the two dominated descriptors are 2
Ha∑  and b∑ 2 ,H

  
in good agreement with previous work that suggested 
hydrogen-bond donors and acceptors, or polar molecular 
surface, were good descriptors to model HIA. 

  (6) 
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  3.2   Prediction accuracies of HIA 
 The reliable evaluation of the prediction accuracy of a model 
should be based on a precise and extensive data set. The 
data sets used by many of the previous models for the 
predictions of HIA include only a small number of 
compounds (20 – 40)   [17] . Based on the limited data set, the 
prediction accuracy of the prediction model cannot be 
reliably guaranteed. In 2007, Hou and co-workers reported 
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a fairly large data set for HIA, which includes 647 drug and 
drug-like molecules collected from a variety of literature 
sources   [55] . Among these 647 molecules, 578 are believed to 
be transported by passive diffusion. Based on the data set, 
Hou developed a set of prediction models for HIA   [55] . 

 The theoretical correlation model for a training set of 
455 compounds was proposed by using the genetic function 
approximation (GFA) technique. The model was able to 
predict the fractional absorption with an  r  2   =  0.71 and 
an average absolute error of 11.2% for the training set. 
Moreover, it achieved an  r  2   =  0.81 and an average absolute 
error of 7.3% for a 98-compound test set. So according 
to Hou’s report, we can give a rough estimation of 
the prediction accuracies for HIA: the best prediction 
model can give an average absolute error less than 10% 
(7.3% for the tested compounds). 

 Based on the same data set, Hou and co-workers reported 
a classification model based on the recursive partitioning 
(RP) technique to classify the compounds into poor 
(%FA  ≤  30%, defined as class I) or good (%FA > 30%, 
defined as class II) HIA   [55] . The obtained model had 
very good classification performance on the training set, 
and it could correctly identify 95.9% (71/74) of the 
compounds in class I and 96.1% (391/407) of 
the compounds in class II. It was encouraging that the 
performance on the test set was also very satisfactory. 
The test set included five compounds in class I and 
93 compounds in class II. All five compounds in class I 
were correctly classified, and only three compounds in 
class II were not correctly identified. 

 As a comparison, Hou and co-workers studied the 
performance of a support vector machine (SVM) to classify 
compounds into high or low fractional absorption   [56] . The 
best SVM classifier could give satisfactory predictions for 
the training set (97.8% for class I and 94.5% for class II). 
Moreover, 100% of the compounds in class I and 97.8% of 
the compounds in class II in the external test set could be 
correctly classified. The total number of misclassified number 
was decreased from 22 of RP to 15 of SVM. It seems 
that the SVM classifier gave more reliable predictions 
than the RP model, based on either the prediction for 
the training set or that for the test set. It is obvious that 
the classification model based on SVM has very good 
capability to discriminate the well-absorbed compounds 
and the poorly absorbed compounds.   

  4.   Prediction of oral bioavailability 

 Oral bioavailability ( F ) is defined as the fraction of the 
ingested dose of a drug that is available to the systematic 
circulation following oral administration. The oral bioavail-
ability of a drug is usually < 100%, considering degradation 
or metabolism of the drug prior to absorption, incomplete 
absorption and first-pass metabolism. Compared with the 
prediction of HIA, the prediction of oral bioavailability is 

considerably more challenging because bioavailability is a 
complex function of many biological and physicochemical 
factors, such as dissolution in the gastrointestinal tract, 
intestinal membrane permeation, intestinal and hepatic first-
pass metabolism, and even the dosage form. Furthermore, 
these factors may vary from patient to patient, and even 
vary in the same patient over time. Whether a drug is taken 
with or without food will affect absorption, and other drugs 
taken concurrently may alter absorption and first-pass meta-
bolism. Moreover, disease states affecting liver metabolism 
or gastrointestinal function will also have an effect. 

  4.1    In silico  prediction models for oral bioavailability 
 In the last several years, several prediction models 
of oral bioavailability based on QSPR analysis have 
been reported   [60-63] . 

 In 2000, Andrews and co-workers developed a regression 
model to predict oral bioavailability   [60] . Compared to the 
Lipinski’s rule-of-five, the false negative predictions were 
reduced from 5% to 3%, while the false positive predictions 
decreased from 78% to 53%. The model could achieve 
a relatively good correlation ( r  2   =  0.71) for the training 
set. But when 80/20 cross-validation was applied, the 
correlation was decreased to  q  2   =  0.58. 

 Recently, Wang and co-workers reported another regression 
model to predict oral bioavailability using the counts of 
functional groups as descriptors   [61] . A genetic algorithm 
was employed to find the prediction models with the best 
combination of functional groups. The final models include 
42 functional groups and two other molecular descriptors: 
molecular refractivity and rule-of-five. The mean  r  2  
and mean  rmse  for the 20 best models were 0.55 and 
21.9%, respectively. For the 90/10 cross-validation, the 
mean  r  2  and mean  rmse  for the test sets were 0.42 
and 24.6%, respectively. Similar to the model reported 
by Andrews   [60] , the  q 2   of this model was 0.13 lower than 
the  r 2  , although the  rmse  was only marginally increased. 

 The classification models for predicting oral bioavailability 
have also been proposed; for example, the model developed 
by Yoshida and co-workers   [62] . The Yoshida’s model was 
developed based on a set of physiochemical parameters, 
including distribution coefficient at pH  =  6.5 (log D  6.5 ), 
 ∆ log D  (log D  6.5 –log D  7.4 ), and 15 functional groups related 
to well-known metabolic pathways   [62] . The ORMUCS 
(ordered multicategorical classification method using the 
simplex technique) method was applied to assign the oral 
bioavailability into one of four classes. In the leave-one-out 
cross-validation tests, an average of 67% of the drugs were 
correctly classified. The predictive power of the model was 
evaluated using a separate test set of 40 compounds, of which 
60% (95% within the same class) were correctly classified.  

  4.2   Prediction accuracies of oral bioavailability 
 It is obvious that the available prediction models cannot 
give reliable estimations for oral bioavailability. According 
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to the publications reported by Andrews  et al.  and 
Wang  et al.    [60,61] , we can give a rough estimation 
of prediction accuracies for oral bioavailability: the prediction 
models for oral bioavailability can give a  rmse  for prediction 
> 20% (20.40% for the Andrew’s model and 24.6% for 
the Wang’s model). 

 Now, all prediction models for oral bioavailability are 
developed based on molecular descriptors. It is possible that 
the hepatic metabolism cannot be effectively explained by 
these molecular properties, and thus highly metabolized 
compounds may not be well predicted by these simple 
descriptor-based models. Recently, Hou  et al.  reported an 
analysis of a database of human oral bioavailability for 
768 chemical compounds   [64] . The correlations between several 
important molecular descriptors and human oral bioavail-
ability were investigated and compared with the earlier work 
reported by Veber  et al.    [65] . The analysis showed that the 
percentages of compounds meeting the criteria based on 
molecular descriptors did not distinguish compounds with 
poor oral bioavailability from those with acceptable values, 
which may suggest that no simple model based on molecular 
descriptors can be used as a general filter to predict oral 
bioavailability with high confidence. The performance of 
these rules based on molecular descriptors in the prediction 
of HIA is obviously much better than that of oral 
bioavailability in term of false positive rate. Therefore, the 
prediction models based on molecular descriptors can give 
good predictions for human intestinal absorption, but 
cannot give reliable predictions for oral bioavailability.   

  5.   Expert opinion 

 The progress in computational modeling of solubility, HIA 
and oral bioavailability is briefly reviewed here. Significant 
effort continues in modeling these three important ADME 
properties, but much work is still necessary to make 
predictions more reliable and accurate to significantly impact 
upon the drug discovery process. For the three ADME 
properties discussed here, only passive human intestinal 
absorption can be predicted with relatively good accuracy. 
Moreover, it should be pointed out that the prediction 
accuracy of the new models does not appear to have 
demonstrated much progress, although many prediction 
models have been developed in the past few years. 
For example, for the seven solubility models compared by 
Kühne and co-workers   [48] , the best model developed by 
Meylan  et al.    [49]  is a relatively old one. For the regression 
models for predicting oral bioavailability, the new model 
developed by Wang  et al.  in 2007   [47]  does not show better 
performance than the Andrews’s model developed in 
2000, although a much larger data set was used in 
Wang’s model   [60] . So the prediction accuracy of the  in silico  
models is still the biggest challenge we are facing now. 

 Undoubtedly, the lack of extensive and reliable 
experimental data are an important reason to hinder the 

development of reliable ADME prediction models. It is 
particularly true for the  in vivo  oral bioavailability and 
human intestinal absorption data, which are usually collected 
for drugs or drug candidates in clinic trials. In addition, 
these data may show significant variability from one source 
to another   [55,64] . The largest pharmaceutical companies have 
developed large in-house databases containing consistently 
measured compound properties. For example, Veber  et al.  
reported an analysis of bioavailability in rat on a data set 
of > 1100 compounds studied at GlaxoSmithKline   [65] ; 
Andrew  et al.  published a study of oral bioavailability for 
591 structures from Glaxo Wellcome’s internal database   [60] . 
However, these data are usually not available publicly for 
the scientific community. Therefore, many models are still 
developed based on small historical data sets taken from 
the literature. Encouragingly, several developments have 
been achieved with the availability of large data sets in the 
recent years. For example, in 2007, two extensive data sets 
for HIA and oral bioavailability were reported by Hou and 
co-workers   [55,64] , which give more opportunities for the 
development of reliable prediction models in the future. 
Certainly, further developments on the availability of ADME 
data for the public domain are still necessary. 

 Many models are reported to predict the aqueous solubility 
of drug-like compounds; but most of the available solubility 
prediction models may only work reliably on non-charged 
compounds, because in the training process of these models 
the effect of ionization was not explicitly considered. It is 
well known that solubility is strongly dependent on many 
factors, such as the effect of ionization and the crystal size of 
the solute. Unfortunately, only limited publications report the 
development of solubility prediction models by considering 
these important aspects of solubility. For example, in 2006, 
Hansen and co-workers employed the Henderson-Hasselbalch 
(HH) equation for the prediction of pH-dependent aqueous 
solubility of drugs and drug candidates   [66] . The intrinsic 
solubility was developed based on artificial neural networks 
and the pKa was predicted by the Marvin software developed 
by ChemAxon. For a data set of 27 drugs, the experimentally 
determined pH–solubility curves were used for the validation 
of the combined pH-dependent model, and that model 
could give a mean  rmse  of 0.79 log S  units. We expect that 
in the coming years more sophisticated models will emerge 
that more tightly integrate measures of ionization, crystal 
packing, and salt effects. 

 For oral bioavailability, no model can yet give reliable 
predictions. The poor prediction of oral bioavailability 
is caused primarily by poor prediction for the first-pass 
metabolism. Predicting oral bioavailability now follows similar 
strategies for predicting most of the other ADME properties: 
by generating molecular descriptors of molecular structures 
in the data set and developing the prediction models. 
The strategy works well for the prediction of many ADME 
properties, but obviously does not work well for the prediction 
of oral bioavailability because the molecular descriptors in 
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current use cannot effectively characterize the first-pass 
metabolism. Therefore, introducing new rules or descriptors 
to model the first-pass metabolism is the most important 
requirement to be met in order to develop accurate prediction 
models for oral bioavailability. With the continually increased 
data of oral bioavailability, we may find better ‘substructure-
specific rules’ directly related to different metabolism 
pathways in the future. Using these substructure-specific 
rules as descriptors, the predictions of oral bioavailability 
may be improved. Another research direction for the 
prediction of oral bioavailability is to develop separated 
prediction models for different components involved in 
oral bioavailability, including passive transcellular transport, 
paracellular transport, carrier-mediated transport, and first-
pass metabolism, and then integrate them together. At present, 
the development of an integrated model is extremely difficult, 
sometimes impossible, because the predictions for some 
mechanisms involved in oral bioavailability are unreliable. 

 Another possible way to improve the prediction accuracy 
of the ADME properties is to develop consensus models by 
combining two or more models for the same property 
together. Actually, the concept of ‘consensus model’ has long 
been introduced into the ADME predictions. For example, 
researchers at Bio-Rad Laboratories, Inc. have introduced 
the consensus score to the KnowItAll ADME/Tox software 
system   [67] , and found that the employment of multiple 

complementary models for the same ADME-Tox end point 
in consensus modeling provides a greater accuracy than that 
of any single model. Recently, Abshear  et al.  validated the 
performance of four models in KnowItAll for predicting the 
intrinsic solubility of 113 diverse organic compounds   [68] . 
For predicted aqueous solubility of 113 compounds, 
four individual models gave absolute average errors of 
0.314, 0.422, 0.327 and 0.324 log units, respectively. By 
combining these four individual models, the consensus 
model gave a absolute average error of 0.257 log units. 

 Finally, it is worth emphasizing that although a lot of 
commercial software systems are available for predicting the 
ADME properties, we still know little about the performance 
of these software systems on specific ADME property. 
It is well recognized among the community that despite 
the best efforts of their developers, some models that 
are assumed to be extensively validated do not have 
the desired performance   [69] . More comparisons of the 
prediction performance of different software systems 
are urgently required in order to guide scientists to choose 
the most appropriate model in the drug discovery process.        
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