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Abstract: Virtual screening, especially the structure-based virtual screening, has emerged as a
reliable, cost-effective and time-saving technique for the discovery of lead compounds. Here, the
basic ideas and computational tools for virtual screening have been briefly introduced, and
emphasis is placed on aspects of recent development of docking-based virtual screening, scoring
functions in molecular docking and ADME/Tox-based virtual screening in the past three years
(2000 to 2003). Moreover, successful examples are provided to further demonstrate the
effectiveness of virtual screening in drug discovery.
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1. INTRODUCTION

The discovery of innovative leads is the key element and
starting point for any new drug discovery project. More
recent advances in molecular biology, robotics and
microelectronics, especially, the complete analysis of the
human genome, modern drug discovery will make
everlasting impact on human diseases. The human genomics
expects to provide us with the sequences of all genes coding
for proteins that make up the biology of a particular
organism. As a consequence, the number of potential targets
for drug therapy may be increased significantly. It is
estimated that the number of potential drug targets may
increase from about 500 at present to about 5000-10000 in
the next few years [1].

Meanwhile, the development of combinatorial chemistry
gives us many opportunities to synthesize thousands upon
thousands of compounds in a very short period. In order to
give rapid and effective assay to the huge pool of molecules,
enormous efforts have been put into the large-scale automa-
tion of high-throughput screening (HTS) [2]. It does not
mean that the combination of combinatorial chemistry and
HTS will spell the end of any rational and knowledge-based
approach, this is because initial euphoria that designated this
technique as a universal lead generator has subsided as a
result of the considerable costs involved and disappointingly
low hit rates. The low hit rates are frequently due to inade-
quacies in quality and quantity of the compound libraries
used for testing. Collections of synthesized compounds or
natural products often contain far less chemical diversity
than is desired, are not bottomless resources, and are very
time-consuming to replenish. Moreover, not every assay can
be automated for an HTS system.
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The application of computational screening is also called
“virtual” or in silico screening. Virtual screening (VS) is the
use of high-performance computing to analyze large
databases of chemical compounds to identify possible drug
candidates, which is seen as a complementary approach to
experimental HTS [3-5]. Virtual screening is knowledge-
driven, which means that some information is available
regarding either the nature of receptor binding pocket or the
type of ligand that is expect to bind productively, or both. It
should be noted that VS encompasses a variety of compu-
tational screens, from the simplistic to the sophisticated, and
hence, can effectively exploit different types of information
describing the receptor. The type of method/methods used in
VS depends upon information available as input and the type
of results required for output. For example, if a 3-D structure
of target protein is available, molecular docking or
combinatorial drug design can be used to perform receptor-
based, fine-grained compounds sieving. If a 3-D receptor
structure is unavailable, then pharmacophore model derived
from bioactive ligands or molecular property profiles, such
as molecular weight, lipophilicity, ADME properties or
drug-like properties, can be used as filters in VS. In the
following sections, recent developed techniques used in VS
and the advances made in VS are reviewed.

2. PHARMACOPHORE-BASED VIRTUAL
SCREENING

A pharmacophore is the spatial arrangement of key
structural features of a set of known ligands or of the
target receptor. Gund was probably the first who described
that functional groups (pharmacophores) could be used for
searching databases to identify molecules that may share the
same structural features [6]. This has led to the successful
development and application of 3D-database pharmacophore
searching for discovering novel lead compounds in drug
discovery [7-8]. Pharmacophore-based virtual screening is
involved in two steps: identification of pharmacophore
model and 3-D search based on the specific constraints. The
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attraction of VS based on pharmacophore model is that a
reasonably focused query on 3-D structural grounds can be
quickly applied to a large database.

Pharmacophore models are typically used when some
active compounds have been identified but the three-
dimensional (3D) structure of the target protein or receptor is
still unknown. Given a set of active molecules, first of all,
analyzing these molecules to identify pharmacophoric
features, these are atoms probably interacting with a
receptor, then aligning the active conformations of the
molecules to find the best overlay of the corresponding
features. The main difficulty in pharmacophore generation is
in handling the conformational flexibility since the active
conformations of the molecules are usually postulated. There
are several commercial programs available for the automatic
identification of pharmacophore models, including catalyst
(Accelrys, http://www.accelrys.com) [9], Discotech (Tripos,
http://www.tripos.com) [10] and GASP (Tripos, http://www.
tripos.com) [11-12]. The main differences between these
programs lie in the algorithms used for the alignment and the
way in which conformational flexibility is handled. A
pharmacophore model not only can be obtained from a set of
active ligands, but also can be derived from the 3-D structure
of receptor. Such a structure of receptor or receptor/ligand
complex provides information on possible and essential
points of interactions between receptor and ligand. The
information provided by the 3-D structure can be analyzed to
identify interaction points in the binding site as pharma-
cophore model, which can be used as a query in a 3-D
database screening. For example, when a crystal complex is
available, the atoms of ligand contributing to receptor-ligand
interaction can be defined as features in a pharmacophore
model. In order to avoid retrieving molecules that present the
correct 3-D arrangement of chemical features, but do not fit
into the active site due to a wrong shape, the protein back-
bone atoms around the active site are usually used to define
the coordinates of centers of exclusion spheres. These spheres
were merged with the feature points into a single pharmco-
phore. In many cases especially when the 3-D starting struc-
tures is only protein, not protein/ligand complex, one has to
generate multiple queries in order to represent different
possible binding modes and explore different possible
pharmacophores ranging from full ligand-mimic pharma-
cophores to subsets. Both of UNITY (Tripos, http://www.
tripos.com) and CATALYST can define pharmacophore
model based on the structure of protein. But sometimes, due
to the complexity of the receptor structure, it is very
necessary to find important features for the definition of
pharmacophore. The Structure Based Focusing module in
Cerius2 (Accelrys, http://www.accelrys.com) uses the known
or suspected active site of a protein to select compounds
which are likely to bind within the defined active site [13]. In
Structure Based Focusing, the defined active site is first
analyzed to generate an interaction map for the active site
consisting of a list of features (such as lipophilic, hydrogen
donor, hydrogen acceptor) that a ligand is expected to satisfy
for a reasonable interaction with the protein. The LUDI
interaction site identification procedure was then used to
generate the interaction sites [14-15], using a set of rules that
are intended to cover the complete range of energetically
favorable orientations for hydrogen bonds and hydrophobic

contacts. Finally, a set of 3-D queries is then derived from
the interaction map and this database is searched with the set
of queries. These hits are scored using LUDI.

After the pharmacophore model is identified, 3-D
database search is performed to find compounds bearing
these pharmacophoric features. Now, several programs are
available for 3-D database search based on pharmacophore
model. The most widely used programs include catalsyt,
unity (Tripos, http://www.tripos.com) [16], MDL (MDL
Information Systems, http://www.mdl.com) [17], Chem-X
[18] et al.

2.1. Recent Advances and Successful Applications of VS
Based on Pharmacophore Model

Compared with other approaches used in VS, the
methods of VS based on pharmacophore model may be the
most mature, so the technical advances in this area are not
very exciting. To identify a pharmacophore model based on
ligands seems no problem, and to generate the important
interactions in receptor for ligand binding need more
attentions. Fox and Haaksma represented a computational
protocol to identify possible ligands from the analysis of the
3-D structure of receptor [19]. The computation protocol was
divided into two stages. In the first stage, the essential
interactions in the binding site with the program GRID [20].
From the multitude of probe types supplied with GRID, the
authors chose a few representatives to sample the different
interactions types, typically including the hydrophobic DRY,
the alkyl hydroxy group OH, and alcoholate probe (O-), sp2

oxygen (e.g., O::, O=), and ammonium probe (N2+, NM3),
organic halogen (Br, Cl), water, amides and amidine et al.
Then, the resulting regions of favorable interactions between
receptor and ligand are translated into a database query. 2-D
queries are specified by chemical substructures that have to
be matched in the resulting GRID energies. The local
minima of the interactions maps (or the geometric average if
several minima are close), and the corresponding distances
between these minima are simply measured to act as the
mutual constraints between these features. In the second
stage, a flexible 3-D database search in UNITY is performed
to retrieve the possible active compounds. The feasibility of
this approach is calibrated with thrombin as the target. In
GRID calculations, three probes including DRY, NM3, and
P4H were used, and a pharmacophore model with three-point
interactions sites (Fig. 1) which consists of one positively
charged center (at the bottom of the S1 pocket) and two
hydrophobic site hp1 and hp2 (in the P and D pockets of
thrombin). Owing to the fact that the test databases used by
Fox et al only contain benzamidine compounds, as the

Fig. (1). Pharmcophore model as derived from the GRID results
and used in the UNITY database search; hp=hydrophobic center.
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positive center the amidine carbon atom of benzamidine (C0)
was used. Based on the query, 3-D flexible database search
was performed, and the calculated results show that the
resulting hit lists are enriched with thrombin inhibitors
compared to the total database. The possible insufficiency of
the Fox’s approach is that it cannot be fully automated, as
the success will critically depend on the identification of an
anchor fragment. An anchor fragment is defined as a
minimal recognition structure essential for binding. For the
identification of these fragments may be accomplished using
the de novo design program LUDI.

The possible combination of pharmcophore model with
molecular docking was investigated by Hindle et al [21].
Hindel proposed an extended version of the flexible docking
tool FlexX (Tripos, http://www.tripos.com), FlexX-PHARM,
allowing the incorporation of information about important
characteristics of protein-ligand binding models into a
docking calculation. This information is introduced as a
simple set of constraints derived from receptor-based type
pharmacophore features, and all docking solutions must
possess the properties prescribed by the set of constraints. In
FlexX-PHARM two different types of constraint can be
defined in the active site: interaction constraint and spatial
constraints. For the first type, the user can specify a FlexX
calculation surface in the active site that must take part in an
interaction with ligand. For the second type, the user can
specify inclusion volume. For the definition of interaction
constraints, an interacting group and interaction type in the
active site of receptor must be specified (along with an
interaction surface if more than one surface exists for that
interaction). FlexX-PHARM ensures that an interaction is
formed between the specified interacting group in the active
site and the ligand in a valid docking solution. The spatial
constraint can be used to constrict ligand position in the
active site and consists of a sphere plus an associated
element type. In order to gain the maximum potential from
FlexX-PHARM in terms of speed and optimal results, some
pro-docking checks were performed to eliminate these
ligands which cannot meet the pharmcophore constraints.
Fig. 2 shows a set of four pharmacophore constraints in the
active site of carbonic anhydrase. Examples are given where
FlexX-PHARM significantly improved the results of
docking in several PDB complexes where FlexX did not
perform particularly well. FlexX-PHARM was also tested as
a database-searching tool on a small dataset of molecules for
three target proteins including thermolysin, carbonic
anhydrase and dihydrofolate reductase. In two cases, FlexX-
PHARM missed one or two of the active molecules due to
the constraint selected. However, in general FlexX-PHARM
maintained or improved the enrichment shown with FlexX.
More importantly, it was able to do this using less time than
required by FlexX. One challenge when using FlexX-
PHARM is that the constraints must first be obtained and
then introduced into FlexX-PHARM.

In the past three years, VS based on pharmacophore
model has been applied to discover novel ligands over ten
systems successfully (Table 1). The inhibitors discovered are
novel, having little similarity to the known ligands. Most
initial leads have affinities in the low-micromolar level.
Among all these systems in Table 1, the pharmacophore
models for 12 systems were obtained based on the ligands,

and only one reported by Brenk et al. was obtained based on
the structural information of receptor. Brenk et al.
superimposed to crystal structures of two igands complexed
with TGT by least squares fit. The hydrogen donor and
acceptor features were defined using UNITY by picking the
appropriate atoms of ligands. In order to consider the
directionality of the hydrogen bonds, corresponding sites are
attributed to the neighboring atoms of the protein and the
interstitial water molecules. The hydrophobic moiety has
been spatially characterized as the centroid of the benzoic
ring of a ligand (Fig. 3). The proposed pharmacophore hypo-
thesis was used in database search of UNITY.

3. COMBINATORIAL DRUG DESIGN

Rational or de novo drug design may be considered as an
optimization process to find the best combination of
molecular fragments which can be constituted into a whole
ligand and well placed in the active site of the receptor. In
the optimization process, the generated ligand should meet
the given pharmacophoric features, which are represented by
the important receptor-ligand interaction points. These
interaction points are usually generated by the analysis of the
3D-structure of receptor.

Table 2 shows the representative de novo design methods
applied in drug design. Besides TOPAS and LEA, the other
approaches are developed before 2000, which have been
reviewed in literature [36]. The methods can be roughly
divided into two categories: atom-based and fragment-based.
Atom-based techniques build up a molecule atom-by-atom,
while fragment-based methods use sets of pre-defined
molecular building blocks that are connected by a virtual
synthesis scheme. Compared with atom-based techniques,
fragment-based approaches seem more appealing, because a

Fig. (2). A set of four phamacophore constraints in the active site of
carbonic anhydrase. Constraint 1: essential metal interaction at the
zinc ion, constraint 2: essential spatial constraint for a carbon atom,
constraint 3: optional hydrogen_donor interaction at the backbone
nitrogen of residue Thr199, and constraint 4: optional hydro-
gen_acceptor interaction at the gamma oxygen of residue Thr199.
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Table 1. Examples of Bioactive Molecules Design Using Pharmacophore-Based Virtual Screeninga

Molecular structure Target Method Activity (µm) Ref.

tRNA-guanine transglycosylase
(TGT)

SuperStar, DrugScore,
UNITY, FlexX

0.25 (Ki) 22

Dopamine transporter (DAT) Quanta, Chem-X 7.3 (Ki) 23

Dopamine transporter (DAT) Quanta, Chem-X 0.255 (Ki) 24

Serine protease chymase CATALYST 0.909 (Ki) 25

antigen α4β1 CATALYST 0.0006 (IC50) 26

EDG3 CATALYST 10 (IC50) 27

Imidazole glycerol phosphate
dehydratase

ISIS-3D 4.0 (IC50) 28

Non-peptidyl endothelin
converting enzyme

DISCO/ISIS-3D 10 (IC50) 29
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(Table 1) contd….

Molecular structure Target Method Activity (µm) Ref.

Mesangial cell proliferation CATALYST 10 (IC50) 30

Dopamine transporter (DAT) Quanta, Chem-X 0.084 (IC50) 31

Rat 5α-reductase CATALYST 6.9 (IC50) 32

Growth hormone secretagogues DistComp/ISIS-3D 1 (EC50) 33

E-selectin ISIS-3D 1.2 nm (IC50) 34

virtual molecule can be easily constructed from combina-
torial building blocks. In practical applications, atom-based
techniques really do not show effective successes in drug
discovery. In these de novo design methods shown in (Table
1), LUDI (Accelrys, http://www.accelrys.com) [14-15, 37],

Leapfrog (Tripos, http://www.tripos.com) [38] and SPROUT
(SimBioSys, http://www.simbiosys.ca) [39-41] may be the
most important ones, and all of these belong to fragment-
based approaches. Fragment-based approaches can be further
divided into two subclasses: (1) sequential growth, (2)
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Fig. (3). Structure-based pharmacophore hypothesis.

Table 2. Examples of De Novo Design Methods

Method Description Ref.

CAVEAT Fragment-based, fragment-based 3-D database search 42

CAVITY, FOUNDATION, DBMAKER, SPLICE Fragment-based, generation of ligand by 3-D database search 43-46

CLIX Fragment-based, fragment-based 3-D database search 47

CONCEPTS Atom-based, stochastic search, MD optimization 48

CONCERTS Fragment-based, stochastic search 49

DLD Atom-based, structural sampling by Monte Carlo 50

GenStar Atom-based, sequential growth 51

GroupBuild Fragment-based, sequential growth 52

GROW Peptide design, sequential growth 53

GrowMol Fragment based, sequential growth 54

HOOK Fragment-based linker search 55

LEA Fragment-based, genetic algorithm 56

Leapfrog Fragment-based, combinatorial search 37

LEGEND Atom-based, sequential growth 57-58

LUDI Fragment-based, sequential growth, combinatorial search 14-15

MCDNLG Atom-based, stochastic search 59

MCSS Fragment-based, multiple-copy simultaneous sampling 60

NEWLEAD Fragment-based, connecting pharmacophoric pieces 61

PRO_LIGAND Fragment-based, sequential growth, combinatorial search 62

SMOG Fragment-based, sequential growth 63

SPROUT Fragment-based, sequential growth, combinatorial growth 38-40

TOPAS Fragment-based, evolutionary algorithm 64



Recent Development and Application of Virtual Screening in Drug Discovery Current Pharmaceutical Design, 2004, Vol. 10, No. 9    1017

fragment-location and linking. The latter approaches rely on
the concept that a small number of well-placed fragments,
each making very favorable interactions with receptor, can
provide a significant overall binding affinity. Historically,
these methods may be the most widely studies of all the
de novo approaches. Certainly, we cannot give the final
decision that fragment-location and linking techniques are
superior to sequential growth ones because both of these two
classes of methods bear inherit advantages and disadvanages.
In many de novo  design systems, these two approaches can
be used as the user’s demand, for example, LUDI and
Leapfrog.

The big problem of most de novo design methods may be
synthetic inaccessibility, which can be overcome by using
the program CLIX, SEEDS, CAVEAT to search the

Available Chemicals Directory (MDL, Inc., San Leandro,
CA) for scaffolds that were components of the designed
ligands. The scaffold-based approach was used to discover
novel inhibitors of Factor Xa and DNA gyrase (Table 3). It is
interesting to find that the scaffold-based approach is quite
similar to pharmacophore-based VS. These molecular
fragments used as scaffolds can be considered as the
pharmacophoric features in a pharmacophore model. In fact,
sometimes, the borderline between two different approaches
is not so obvious.

3.1. Recent Advances and Successful Applications of
Combinatorial Drug Design

In the past several years, combinatorial drug design
approaches based on genetic algorithm may be the most

Table 3. Examples of Bioactive Molecules Design Using De Novo Design

Molecular structure Target Method Activity Ref.

Lanosterol 14α-demethylase
(CYP51)

MCSS/LUDI 35.21 (IC50) 65

Factor Xa PRO_SELECT 16nm (Ki) 66

Cdk4 LEGEND/SEEDS 7.6 (IC50) 67

DNA gyrase
LUDI, CATALYST,

MOLOC
0.03

(MNEC)
68
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important advances in this area. In (Table 2), both of TOPAS
and LEA are based on genetic algorithm. In TOPAS [64], a
set of ~24,563 fragment structures serves as the building
blocks, which were obtained by a straightforward fragmenta-
tion procedure applied to 36,000 known drugs. Eleven
reaction schemes were implemented for both fragmentation
and building block assembly. This combination of drug
derived building blocks and a restricted set of reaction
schemes proved to be a key for the automatic development
of novel, synthetically tractable structures. TOPAS is based
on a simple evolutionary algorithm (EA), a (1, λ) evolution
strategy. In optimization process, molecules were generated
from a parent structure by virtual synthesis, and the best
structure of a generation was selected as the parent for the
subsequent TOPAS cycle. The fitness function used in GA
optimization is the pair-wise similarity between the template
and a new variant structure. TOPAS was used to find the

potential thrombin inhibitors. The first application of
TOPAS was tried to develop molecules mimicking the
NAPAP structure. The Tanimoto index was used as the
fitness function. After only 12 optimization cycles the
process converged at a high fitness level (0.86), and the best
hit is quite similar to NAPAP (Fig. 4). Moreover, TOPAS
was used to the design of the peptide-analogues of the
tripeptide D-Phe-Pro-Arg, an excellent natural thrombin
substrate. The calculated results are encouraging.

The LEA approach is also based on evolutionary
algorithm [56], but the basic operations of LEA are quite
different from those of TOPAS. The present LEA is able to
operate directly on the SMILES line notation. The algorithm
takes an initial set of fragments and iteratively improves
them by means of crossover and mutation operations. Figure
5 shows the crossover operations in LEA. In LEA, physico-

Fig. (4). The best structure afforded by TOPAS (a) and (b) NAPAP.

Fig. (5). Crossover operations in LEA.
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chemical properties of molecules are employed as scoring
function. LEA was applied to the de novo  molecular design
of new retinoids, and some promising retinoid analogs are
obtained.

Compared with the other virtual screening approaches,
the de novo design techniques do not show huge progress in
practical applications. Certainly, De novo design approaches
are beginning to show efficacy in the process of lead
generation. Recently, Ji et al. proposed several non-azole
lead molecules by de novo design [65]. All of the lead
molecules exhibited strong inhibitory effects on CYP51 of
Candida albicans. Table 3 shows the examples of bioactive
molecules design using de novo design.

4. VIRTUAL SCREENING BASED ON MOLECULAR
DOCKING

Molecular docking can fit molecules together in
favorable configuration to form a complex system. It has
been practically applied as a very efficient way in the studies
of protein-ligand interactions. Structural information from
the theoretically modeled complex may help us to clarify the
mechanism of molecular recognition, and even can instruct
us to discover novel ligand according to the predicted
binding affinities between receptor and ligands [69]. The
attraction of receptor-ligand docking is that it represents the
most detailed and relevant computational model for
identifying a receptor-focused subset of database. There are a
large number of docking programs available for use in
virtual screening, differing in the sampling algorithm,
scoring functions, the treatment of flexibility of ligand and
receptor, and the CPU time required to dock a molecule to a
given target. The commonly used docking programs are
listed in (Table 4).

4.1. Recent Advances of Molecular Docking and Succes-
sful Examples

Researches on methodology of molecular docking
are very active in the past several years. Along with the
further improvements of traditional methods, such as DOCK,
FlexX (Tripos, http://www.tripos.com), AutoDock, Gold
(Cambridge Crystallographic Data Centre, http://www.ccdc.
cam.ac.uk), ICM (MolSof, http://www.molsoft.com), several
new docking programs have been released recently, inclu-
ding EUDOC, LigandFit (accelrys, http://www.accelrys.com)
and eHiTS (SimBioSys, http://www.simbiosys.ca).

EUDOC was designed by Pang et al [72]. Compared with
the other docking techniques, the EUDOC program has its
own features. First, the molecular flexibility of both ligand
and receptor is taken into account via either conformation
selection theory or conformation substitution theory. Second,
the program computes the intermolecular interaction
energies of biologically important metal ions such as Zn2+,
Ca2+, and Mg2+ that mediate the binding of ligand to receptor
using a cationic dummy atom approach. Third, the program
uses “spatial decomposition” to achieve 100% parallelism in
computing. Using the EUDOC program, the authors
performed a computational screening of the 1998 release of
the ACD (Available Chemicals Directory) database to
identify prototypic inhibitors of FTase containing a zinc
divalent cation in the active site and identified 21 compounds
as potential inhibitor leads of FTase. Among these 21
compounds, 18 compounds have inhibitory activities against
Ftase in vitro at the concentration of 500 uM; and 4
compounds with in vitro  IC50 values in the range from 25 to
100 uM. The most potent inhibitor also has inhibitory
activity in human lung cancer cells. Furthermore, this lead
(IC50 = 25 uM) identified with the aid of the EUDOC

Table 4. Commonly Used Docking Programs for Virtual Screening

Method Sampling method Scoring function Speed Ref.

DOCK Incremental build Force field, contact score, chemical complementary score Fast 70

eHiTS Exhaustive search Empirical score Fast 71

EUDOC Exhaustive search Force field Fast 72

FlexX Incremental build Empirical score Fast 73

ICM-Dock stochastic global optimization Empirical score Fast 74

LigandFit Monte Carlo Empirical score Fast 75

FlexiDock Genetic algorithm Force field Slow 76

Fred Conformational ensembles Shape complementarity, Gaussian score Fast 77

Slide Conformational ensembles Empirical score Fast 78

Affinity Monte Carlo/MM/MD Force field Slow 79

AutoDock Genetic algorithm Empirical score Slow 80

Glide Exhaustive search Empirical score Slow 81

Gold Genetic algorithm Empirical score Fast 82

QXP Monte Carlo Force field Slow 83
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program, is more active than the generally recognized most
potent inhibitor lead, kurasoin A (IC50 = 59 uM).

LigandFit is developed by Venkatachalam et al. recently
[75]. The method belongs to a new shape-based method,
which employs a cavity detection algorithm for detecting
invaginations in the protein as candidate active site regions
(Fig. 6a). A shape comparison filter is combined with a
Monte Carlo conformational search for generating ligand,
poses consistent with the active site shape. The initial
docking of a ligand is obtained by alignment of the principal
axes of the ligand to the principal axes of the site (Fig. 6b).
Then the docking energy was used to explore the best
docking conformation of ligand. The docking energy
includes internal energy of the ligand and the interaction
energy of ligand and receptor. In order to reduce the errors
arising from grid interpolation, a new non-linear interpola-
tion scheme was used. The authors applied LigandFit to 19
diverse protein-ligand complexes. The results appear quite
encouraging, reproducing the X-ray structure ligand poses
within an RMS of 2 Å in 14 out of 19 complexes. Moreover,
high-throughput virtual screening using LigandFit was
applied to the thymidine kinase receptor. These results show
that combined with LigScore, LigandFit yields very good hit
rates for a ligand pool seeded with known activities.

6a.

6b.

Fig. (6).  (a) Schematic representation of the grid system enclosing
the protein (black boundary), and (b) four orientations of the ligand
consistent with the shape correspondence between the ligand and
the site.

The eHiTs program was released by SimBioSys, Inc.
recently [71]. In eHiTs, the search algorithm is based on
exhaustive graph matching that rapidly enumerates all
possible mappings of interacting atoms between receptor and
ligand. Then dihedral angles of rotatable bonds are computed
deterministically as required by the positioning of the
interacting atoms. Consequently, the algorithm can find the
optimal conformation even if unusual rotomers are required.
The scoring function contains novel treatment of weak
hydrogen bonds, aromatic π-stacking and penalties for
conflicting interactions. Alternatively, the target cavity
description can be based on a pharmacophore model or a
CoMFA study of overlaid lead compounds. Another very
important feature of the eHiTS system is its exhaustive
nature. A systematic algorithm is used in eHiTs with no
random, stochastic or evolutionary element. Therefore,
eHiTS provides comprehensive search space coverage unlike
other methods, which are limited to finding an arbitrary
subset of possible solutions due to their use of sampling.
eHiTs divides a ligand into rigid fragments or nodes that are
docked separately in receptor and stores rigid fragment poses
in DockTable, a SQL database that increases the speed of
dockings by dynamically updating and retrieving molecular
fragments during the docking process.

All docking procedures should meet two ongoing
methodological challenges: adequate sampling of receptor-
ligand conformations and accurate evaluation of receptor-
ligand complementarity. In most docking programs, the
flexibility of ligand is carefully treated with different
computational techniques, for examples, incremental build
and conformational search in DOCK and FlexX, genetic
algorithm in AutoDock and GOLD and pseudo-Browinan
sampling in ICM etc. But the treatment of receptor flexibility
remains a major challenge. In many cases, the conformational
changes induced by ligand binding are very significant. If
one cannot consider the receptor flexibility properly, the
docking results may be questionable. Recently, Hou et al.
studied the binding mode of Quinazoline Type inhibitor
complexed with EGF-R. DOCK calculations do not give the
proper orientation of inhibitor in EGF-R. The reason lies in
the fact that the present DOCK program does not consider
the flexibility of the protein [84].

Most effects to incorporate receptor flexibility are the
usage of the ensemble of receptor structures from NMR struc-
tural study or molecular dynamics simulations. Recently, the
program AutoDock has been used to investigate several
strategies for incorporating protein flexibility using an
ensemble of receptor to generate Boltzmann-weighted grids
with which docking function are generated [85]. In FlexE, an
extension to FlexX, a predefined ensemble of receptor
structures were used in molecular docking. The several avail-
able crystal structures were superimposed, and alternative
conformations are recombined to create complete structure
of receptor. Docking against this ensemble is two-fold faster
than explicit docking against all conformations [86].
Naturally, the usage of the ensemble of receptor structures
would be computational expensive, because the docking
process should be performed to each individual receptor
structure, with a view to identifying all ligands that bound to
at least one conformational form of receptor.
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In the last three years, the practical applications of VS
based on molecular docking in drug design are very
successful (Table 5), which means that VS based molecular
docking is gradually stepping from a stage of technical
development into a new stage of successful application in
pharmaceutical industry.

4.2. Scoring Functions

As we discussed above, docking of small molecules into
their biomolecular receptors is a useful tool in drug
discovery. The reliability of molecular docking or even de
novo design is eventually based on precise scoring functions.
Scoring functions are used to estimate the binding affinity of
a novel molecule or a molecular fragment in the active site of
receptor. Scoring functions are a very active and rapidly
advanced research area, and substantial progress has been
made in 2000 and 2003, resulting in a broad spectrum of
methods for estimation of binding affinities. Here, we only
give a brief introduction to the new development in this field,
including statistically-fit scoring functions, knowledge-based
scoring functions, first-principle-based scoring functions and
consensus scoring approach.

Statistically-fit scoring functions are widely used in
molecular docking, which divide the total binding affinity of
protein-ligand complexes to several empirical weighted-
interaction terms, including hydrogen bonding, metal-ligand
interaction, hydrophobic interaction, and rotational entropy
etc [107]. The advantage of statistically-fit scoring functions
are obviously: first, these kinds of scoring functions are
computationally efficient; second, the individual terms give
chemists more intuitionistic knowledge of which specific
force largely contributing to binding free energies. Unfortu-
nately, statistically-fit scoring functions are dependent on
their training set. Each author has tried to make this as gen-
eral as possible, but concerns remain as to the extensibility of
these functions to new systems.

In recent years, knowledge-based potentials have made
huge progresses. These kinds of approaches used the experi-
mental determined protein-ligand complexes by statistical
means to extract rules on preferred binding geometries.
These rules are converted into ‘pseudo-potentials’, which, in
turn, can be applied to score predicted ligand binding
conformations. Compared with force-field potentials, these
knowledge-based potentials implicitly incorporates physical
effects not yet fully interpreted from only the theoretical
point of view, for example, (de) solvation and polarization.
As statistically-fit scoring functions, knowledge-based
potentials may be greatly limited by experimental crystal
structures for deriving these potentials. During the past
several years, several knowledge-based approaches to ligand
binding have been reported, which include SMoG [108,
109], PMF [110], BLEEP [111], DrugScore [112, 113] and
others [114, 115]. All these approaches are based on the
same formalism and rate observed frequency or probability
distributions to pair-(pseudo-)potentials:

∆Wij(r) ∝ - In (1)

where gij(r) is the frequency or probability distribution of
atom pairs of type i and j at a distance from each other, and
gref corresponds to a reference distribution. The choices of

the reference distribution are treated differently in these
approaches. Moreover, the treatments of solvation effects are
different in these approaches.

In these three knowledge-based potentials, DrugScore
proposed by Gohlke et al. may be the most popular one. The
knowledge-based scoring function used in DrugScore was
developed by converting structural information for 1376
protein-ligand complexes, extracted from Relibase [116],
into distance-dependent pair-potentials and solvent-acces-
sible surface-dependent singlet-potentials using 17 different
atom types. The sum of both terms was used to score
protein-ligand interactions. For two test sets of 91 and 68
complexes, DrugScore reevaluated the multiple solutions
proposed by FlexX, and gave the best solution (rank 1) in
75% of all cases. Moreover, Gohlke et al. compared the
binding geometries used DrugScore and ‘chemical score’ in
DOCK 4.0, and found that DrugScore is superior. This
proves the DrugScore is somewhat more reliable in
predicting the binding affinities. For a test set with 56 crystal
protein-ligand complexes, predicted power of r2=0.56 was
obtained for predicting binding free energies. Furthermore,
DrugScore was used in objective function in docking
optimizations. Compared to the AutoDock Scoring function,
DrugScore yields slightly superior results in flexible docking
[117]. Now, DrugScore is available in the SYBYL interface
to FlexX.

Recently, Ishchenko reported SmolG2001 [118], the
improved knowledge-based scoring function of SMoG. In
the latest version of the potentials, the authors defined the
reference state that ensures proper normalization of contact
probabilities (sum of all values over atom types is equal to 1)
and introduced to distance intervals (“bins”) over which the
contact statistics are computed. SMoG2001 reproduces the
experimental binding constants of the majority of 119
complexes of the training set with high accuracy. Moreover,
SMoG2001 performs better than two other widely used
scoring functions, PMF and SCORE1 in LUDI, and com-
parably to DrugScore. SMoG2001 poorly predicts the
affinities of ligands interacted with metal ions and ligands
that are large and flexible.

First-principle-based approaches may become more and
more important in molecular docking in the near future. In
contrast to statistically-fit scoring functions, first-principle-
based approaches divided the total binding affinities to
individual terms, and computed those terms from physico-
chemical theory while not from fitting to experimental
binding affinities. Compared with the two kinds of scoring
functions above, first-principle-based approaches are the
most theoretically rigorous, though they are relatively time-
consuming and bear theoretical difficulties in the evaluations
of certain contributions, especially entropy and de(solvation)
effect. Recently, the researches in the Kuntz groups have
ever introduced PBSA (Possion-Boltzmann/surface area) and
GBSA (Generalized Born/surface area) to evaluate de(sovla-
tion) contributions in molecular docking [119, 120]. In First-
principle-based approaches, the ‘MM-PBSA’ approaches
proposed by Kollman et al. may be the most important
improvement in this field [120-124]. In MM-PBSA, the
binding free energy of a noncovalent associating for a
protein-ligand system can be computed as:

gij(r)
gref
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Table 5. Examples of Bioactive Molecules Design Using Docking-Based Virtual Screening

Molecular structure Target Method Activity Ref.

tRNA-guanine transglycosylase
(TGT)

SuperStar, DrugScore,
UNITY, FlexX

0.25 (Ki) 22

Human carbonic anhydrase Unity, FlexS, FlexX
0.6 nm
(IC50)

87~
88

AmpC β-lactamase
DOCK (Northwest

Univ. Version)
26 (Ki) 89

β-adrenergic receptor kinase 1
(βARK1)

ARCHER 126 (IC50) 90

Thymidalate synthase DOCK 1.4 (Ki) 91

Aldose reductase (ALR2) DOCK 0.10 (IC50) 92

Adenovirus proteinase EUDOC 3.09 (Ki) 93
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(Table 5) contd….

Molecular structure Target Method Activity Ref.

Bcl-2 DOCK 10 (IC50) 94

Aldose reductase ADAM&EVE, GREEN 4.3 (IC50) 95

Matriptase DOCK 0.92 (IC50) 96

Retinoic acid receptor ICM 2 (ED50) 97

Dihydrodipicolinate reductase FLOG 7.20 (Ki) 98

Farnesyltransferease EUDOC 25 (IC50) 99

Protein tyrosine phosphatase
(PTP1B)

DOCK 21 (Kis) 100
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(Table 5) contd….

Molecular structure Target Method Activity Ref.

Kinesin DOCK 1.4 (IC50) 101

phosphoribosyltransferase DOCK 16 (IC50) 102

Hypoxanthine
Phosphoribosyltransferase

(HPRT)
DOCK 0.5 (Ki) 103

Serine protease
FRAGMENT++,

DOCK
79 (pIC50) 104

HIV-1 TAR DOCK, ICM 1 (CD50) 105

Nuclear hormone receptor (NR) ICM NR 106
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∆Gbind = Gcomplex - Gprotein - Gligand

= ∆EMM + ∆GPB + ∆GNP - T∆S (2)

where GPB is the polar solvation energy in continum
solvent, usually computed using a finite-difference Poisson-
Boltzmann (PB) model, and GNP is the nonpolar solvation
energy, which is often obtained from the solvent-accessible
surface area (SA). EMM denotes the sum of molecular
mechanical (MM) energies of the molecules from internal,
electrostatic and van der Waals energies. The last term in
equation 2 is the solute entropy and can be estimated by a
combination of classical statistical formulas and normal-
mode analysis. The thermally averaged energy terms in
equation 2 are obtained from the MD sampling. In recent
paper of Wang’s et al., the author applied the MM/PBSA
technique to determine the binding mode between HIV-1 RT
and efavirenz. The authors calculated the binding free
energies between HIV-1 RT and efavirenz for the five
possible binding modes, and successfully recognized the
correct one. The final structure of the MD simulations is very
close to a 2.3 Å crystal structure solved by the Dupont
Pharmaceuticals recently, and the rmsd of the ligand and its
surroundings (about 50 residues) is 1.0 angstrom [125]. In
2003, Hou et al. applied MD simulations combined with
MM-PBSA to determine the correct binding mode of the
quinazoline inhibitor and EGF-R. The most favorable
binding mode identified by MM/PBSA has a binding free
energy about 10 kcal/mol more favorable than the second
best one. When the authors begun this project, the crystal
structure of EGF-R is not available, so the homology model
of EGF-R was applied. When the project was finished, the
crystal structure of quinazoline/EGF-R was reported. It is
interesting to find that the best binding model predicted by
MM-PBSA is very similar to the structure [84]. Moreover, it
is encouraging that the crystal water molecules crucial to
ligand binding was produced by the predicted model. In the
further research, the development of efficient approaches to
represent the entropic effects precisely and quickly may be
one of the most important tasks in MM/PBSA.

Since each scoring function has been derived from a
different set of crystal structures, it is reasonable to use
multiple functions when evaluating a protein-ligand pair. A
consensus can be applied: structures with good fits in
multiple scoring functions can be examined further, and just
drop the ones without. In 1999, Charifson et al. totally used
three scoring functions to rank docked conformations [126].
Compared with the performances of a single scoring
function, the hit rates can be effectively improved. However,
it has been questioned by the authors themselves whether
such an approach is of general use to predict binding free
energies of small sets compounds. Recently, Tripos proposed
a module named CScore (Consensus Score) (Tripos,
http://www.tripos.com) [127] to integrate a number of
popular scoring functions for ranking the affinity of ligands
bound to the active site of a receptor. The CScore module
may be the first available commercial program that uses the
consensus score. In CScore, five different scoring functions
were used, including G_score [128], PMF_score [129],
D_score [130], ChemScore [131] and F_score [132]. In
CScore, the range of scores for each scoring function are
determined, above these the cutoff threshold are considered

"good", and the consensus score is the sum of the number of
"good" results for each ligand in each scoring function. A
publication by Tripos scientists indicates the reliability of
molecular docking can be improved by combining results
from functions in CScore [133]. In 2002, Paul and Rogan
proposed a consensus docking approach (ConsDock) that
takes advantage of three widely used docking tools (Dock,
FlexX, and Gold) [134]. When applied to a test set of 100
protein-ligand complexes from the Protein Data Bank,
ConsDock significantly outperforms single docking with
respect to the docking accuracy of the top-ranked pose. In
60% of the investigated cases, ConsDock was able to rank as
top solution a pose within 2 Å RMSD of the X-ray structure.

5. VIRTUAL SCREENING BASED ON ADME/TOX
FILTERS

The significant failure rate of drug candidates in later
developmental stages is driving the need for predictive tools
that can eliminate inappropriate compounds before
substantial time and money are invested in testing. It has
been estimated that about 50% of such failures are caused by
ADME/Tox deficiencies. Virtual screening should not be
restricted to the scenarios with respect to optimizing binding
affinity, and the pharmacokinetic properties should also be
treated as important filtering protocol.

5.1. In Silico Prediction of ADME Properties

The simplest ADME-concerned filters may be “rule of 5”
proposed by Lipinski et al. in 1997 [135]. Lipinski and
coworkers analyzed a subset of 2245 drugs from the World
Drug Index (WDI). They found that poor absorption and
permeation are more likely to occur when (1) the molecular
weight is over 500, (2) the octanol/water partition coefficient
is over 5 (CLOGP) or 4.15 (MLOGP), (3) the number of
hydrogen-bond donors (OH and NH groups) is more than 5,
and (4) the number of hydrogen-bond acceptors (N and O
atoms) is more than 10. The fast estimations of logP allow
the “rule of 5” screening of library prior to enumeration.
Moreover, based on screening results from Merck and Pfizer,
Lipinski argues that it is much easier to optimize pharmaco-
kinetic properties early on the process of drug discovery, and
attempt to optimize the receptor binding affinity at a later
stage [136].

Many computational approaches have been developed for
ADME parameters [137-145], including bioavailability,
aqueous solubility, intestinal permeability, blood-brain
barrier penetration, metabolism, drug-drug interactions, drug
transport and toxicity. The predictions of these properties are
involved in two aspects of modeling methods: data modeling
and molecular modeling. For molecular modeling, molecular
mechanics, pharmacophore modeling, molecular docking, or
even quantum mechanics are used to explore the potential
interactions between the small molecules under considera-
tion and proteins known to be involved in ADME processes,
such as cytochrome P450s. For data modeling, quantitative
structure-activity relationship (QSAR) approaches are
typically applied. Based on appropriate descriptors, QSAR
ranging from simple multiple linear regression to modern
multivariate analysis techniques or machine-leaning methods,
such as partial least squares (PLS) [146], genetic algorithm
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(GA) [147], neural networks (NN) [148], and support vector
machines (SVM) [149], are now being applied to the
analysis of ADME data.

The predictions of aqueous solubility, intestinal permea-
bility, and blood-brain barrier penetration are usually based
on the QSAR approaches. Most of the early predictive
models for intestinal permeability or blood-brain barrier
penetration are based on a multiple linear regression and
many used physicochemical properties, such as polar surface
area, logP, volume, and hydrogen bonding capacity [138].
Additionally, other kinds of descriptors have been developed
and applied to ADME predictions. Ghuloum et al. used a
numerical molecular representation called molecular hashkey
predict logP and intestinal absorption of a set of drugs [150].
In VolSurf, a variety of three-dimensional molecular field
descriptors are transformed into a new set of descriptors,
which was used as inputs for the construction of models for
aqueous solubility, intestinal permeability and blood-brain
barrier penetration [145].

The relationships between oral bioavailability and mole-
cular structures have been investigated recently [151-154]
The prediction of oral bioavailability is relatively difficult,
because it depends on a superposition of two processes:
absorption and liver first-pass metabolism. Yoshida and
Topliss constructed a QSAR model with a set of physioche-
mical parameters [151]. The oral bioavailability determined
in human adults was assigned one of four ratings and
analyzed in relation to physicochemical and structural factors
by the ORMUCS (ordered multicategorical classification
method using the simplex technique) method. The predictive
power of the model was evaluated using a separate test set of
40 compounds, of which 60% (95% within one class) were
correctly classified. Andrews et al. also proposed a QSAR
model based on 591 compounds and 85 structural descriptors
[152]. Moreover, compared with the Lipinski’s rule of 5, the
false negative predictions were reduced from 5% to 3%
while the false positive predictions decreased from 78% to
53%. However, the predictability of this model of the false
positive predictions are quite close to random, so it cannot be
applied as a filter in virtual screening as the current form.
Bans used genetic programming to predict oral bioavail-
ability [153] The results show a slight improvement than the
Toshida’s results, although a direct comparison is difficult
owing to different selection of the bioavailability ranges of
the four classes. Recently, Mandagere et al. proposed a
graphical model integrating available in vitro ADME data,
such as Caco-2 permeability and metabolic stability in liver
S9 or microsomes, to estimate %F into groups of low,
medium, or high regions [154]. For a large number of drug
candidates, this graphical model provides a tool to estimate
human oral bioavailability from in vitro ADME data. But the
inputs for this model rely on other ADME-concerned
properties, such as permeability and metabolic clearance, and
thus cannot be used as high throughput fashion in virtual
screening.

Theoretical studies of transporter proteins, especially P-
Glycoprotein (P-gp), are active in recent years, because
transport proteins are found in most organs involved in the
uptake and elimination of endogenous compounds and
xenobiotics, including drugs [155]. QSAR and pharmaco-

phore modeling were applied to study the common features
of p-gp substrate, the interactions between substrate and P-gp
[156-161]. On the basis of the obtained results, we can give
some explanations to the broad structural variety of the P-gp
substrates and inhibitors and give predicted models for
discrimination between substrate and non-substrate, but at
present the accuracy of those models is too limited to be
applied in virtual screening.

The researches on metabolism are also very active in
recent years, because the extent and rate of metabolism affect
clearance, whereas the involvement of particular enzymes
might lead to issues related to the polymorphic nature of
some of these enzymes and to drug–drug interactions. Ekins
et al. proposed 3D/4D QSAR and pharmcophore modeling to
investigate the common structural features of cytochrome
P450 (CYP) 2C9 inhibitors and interactions between
competitive inhibitors and P4502C9 [162-163]. The obtained
3D- and 4D-QSAR models of CYP inhibition will aid in
future prediction of drug-drug interactions. Cruciani et al.
proposed a program named MetaSite to identify potential
substrate of cytochrome P450s [164], which is based on
pharmacophore model obtained from interaction fields for
the protein structure and a pharmacophoric fingerprint for
the potential substrate. Zuegge proposed a linear PLS-based
prediction system for binary classification of drug-drug
interaction liability caused by cytochrome P450 3A4
inhibition. It correctly predicts 95% of the training data and
90% of a semi-independent validation data set, and can be
used as a valid filter in virtual screening [165]. Several
approaches that use databases to predict metabolism are
available or under development, including expert systems,
such as MetabolExpert, META or Meteor and Metabolism
[166, 167].

Overall, the number of ADME properties that can be
predicted computationally is very limited. Due to the
predictability of these approaches, only several properties,
including drug solubility, Caco-2 cell absorption, blood-
brain barrier permeation, can be practically applied in virtual
screening. At present, the widely-used programs for ADME
predictions include VolSurf (tripos, http://www.tripos.com)
[145, 168], C2.ADME (accelrys, http://www.accelrys.com)
[169, 170] and QikProp (schrödinger, http://www.schrödinger.
com) [171-173].

VolSurf reads or computes 3-D molecular interaction
fields and uses image-processing methods to convert them
into simple molecular descriptors that are easy to understand
and interpret. These descriptors quantitatively characterize
size, shape, polarity, and hydrophobicity of molecules, and
the balance between them. Multivariate statistical methods
within VolSurf enable the creation of models that relate its
descriptors to biological properties. The ADME models
included in VolSurf predict drug solubility, Caco-2 cell
absorption, blood-brain barrier permeation, and drug
distribution. These models have been developed from
published experimental data from in vitro assays to in vivo
behavior of drugs. Recent studies have shown that models of
membrane partitioning generated using VolSurf's descriptors
are significantly more predictive than those generated from
other descriptors.
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C2·ADME can give predictions for several ADME
properties including passive intestinal absorption, blood-
brain barrier (BBB) penetration, and aqueous solubility at
25°C. All three models are designed for analysis of combina-
torial and virtual libraries, as well as individual molecules.
The models were developed and validated using a large and
diverse set of compounds with data obtained from the
literature as well as data generated by Pharmacopeia Drug
Discovery Services. C2·ADME does not require 3-D
structure generation which can be the most time consuming
part of the prediction process, usually slowing it down by
making the analysis of large virtual libraries difficult and
laborious.

Based on years of research, QikProp has been developed
by Professor Bill Jorgensen at Yale University, specifically
for drug discovery. QikProp results have been fitted to
datasets of drug-like molecules, based on 2-D and 3-D
descriptors reflecting Monte Carlo simulation studies as well
as experiment. QikProp predictions are calculation-based, as
opposed to fragment based. The calculated features of
QikProp include Solubility, Blood/Brain barrier permeabi-
lity, Caco-2 Cell Permeability Boehringer, Caco-2 Cell
Permeability Affymax, MDCK Cell Permeability Affymax
and Skin Permeability Coefficient.

5.2. In Silico Prediction of Toxicity

Toxicity is responsible for many compounds failing to
reach the market and for the withdrawal of a significant
number of compounds from the market once they have been
approved. The current approaches for in silico  prediction of
toxicity can be divided into two basic categories: knowledge-
based and statistically-based [174, 175]. Knowledge-based
approaches use rules about generalized relationships between
structure and biological activity that are derived from human
expert opinion and interpretation of toxicological data to
predict the potential toxicity of novel structure. On the other
hand, statistically-based approaches use calculated parame-
ters, structural connectivity and the application of various
statistical methods to derive mathematical relationships for a
training set of non-congeneric compounds in an unbiased
manner. At present, several commercial tools of in silico
prediction of toxicity are available, which include; DEREK
(LHASA Limited, http://www.chem.leeds.ac.uk), Hazard
Expert, COMPACT, CASE and MCASE (MultiCASE,
http://www.multicase.com), OncoLogic (LogiChem, http://
www.logichem.com) and TOPKAT (accelrys, http://www.
accelrys.com). The features, main strength and limitations of
these programs have recently been reviewed [174]. The
primary emphasis of the current software packages is carci-
nogenicity and mutagenicity, although some packages do
also include models and/or knowledge bases for other end-
points, such as teratogenicity, irritation, sensitization, immu-
notoxicology and neurotoxicity.

It should be noted that at present the predictability of the
commercial tools for toxicity prediction is quite limited. The
National Toxicology Program (NTP) has conducted several
exercises to validate the predictability of the widely-used
programs. The first exercise conducted by the NTP involved
44 chemicals [174]. The predictions made by Multi-CASE,
TOPKAT, DEREK, and COMPACT were published in

advance of the bioassays being performed. The predictions
were then compared to the results from the bioassays. The
best prediction is given by DEREK, with a correction ratio of
59%. If we want to use effective filter of toxicity in virtual
screening, the predicted precision of the current programs
should be promoted greatly.

6. STRATEGIES FOR VIRTUAL SCREENING

When the crystal structure of receptor and a prepared 3-D
database are available, virtual screening based on molecular
docking can certainly be applied to obtain the best
candidates. Usually, molecular docking is time-consuming, if
the 3-D database, such as the ACDSC database, is very large,
the cost of virtual screening will be very huge. Often, in a
project, one can combine several approaches of virtual
screening together, and reduce the screening scope gradually.

Figure 7 represents a typical strategy in virtual screening.
First, one can use several ADME-concerned filters to reduce
the size of the initial database. Common filtering protocols
include “drug-like” property, Lipinski’s rule of five or
ADME properties. Other physical filters could also be
included, such as the number of rotatable bonds in molecules
or polar surface areas. Additional filters are often applied at
this stage to remove compounds containing specific chemical
substructures associated with poor chemical stability or
toxicity. All of these filters are computationally inexpensive
and can be applied to very large databases.

Second, if the inhibitors of a protein are available, then
some computational tools can be used, such as FlexS (tripos,
http://www.tripos.com) or ROCS (OpenEye, http://www.
openeye.com), to reduce the database size by shape-
similarity with known inhibitors. FlexS can rapidly overlay
rigid ligands to the template molecule and screen large lists
of ligands that make use of rapid rigid scoring, followed by
flexible alignment of the best scoring ligands.

Then, the chemical characteristics of the binding site can
be analyzed to determine the functional group maps or hot
spots for protein-ligand interactions, which can be used as
receptor-based pharmacophore model. This pharmacophore
model combined with some steric constraints from receptor
can be used as query of UNITY for 3-D database screening.
After screening, only these compounds with appropriate
chemical features complementary to the receptor-based
pharmacophore model and suitable steric features survived.
The receptor-based pharmcophore model can be obtained
from the analysis of the crystal complex structure or from
computational programs such as GRID, MCSS, LUDI,
SuperStar. Virtual screening based on receptor-based phar-
macophore model is slower than virtual screening in the
above two stages, but generally, it is also much faster than
virtual screening based on molecular docking.

After the above three stages of virtual screening, the size
of the initial database was greatly reduced, and this database
can then be processed through atom-based molecular
docking screening, using higher fidelity, but substantially
slower, throughput methods.

In 2001, the group of Klebe et al. reported the de novo
design of novel inhibitors aganist human carbonic anhydrase
[87, 88]. In this project, the authors applied a protocol of
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several consecutive hierarchical screening protocols invol-
ving a preselection based on functional group requirements
and fast pharmacophore matching (Fig. 8).

The search entries for virtual screening were taken from
the Maybridge (61,186 entries) and the LeadQuest (37, 841
entries) databases. First, application 5-rules reduced this
initial set to 98,850 entries. Then, UNITY search was
performed to retrieve these compounds with possible zinc-
binding groups, leading to a reduction to 5904 entries.

In the next step, the LUDI, GRID, SuperStar and
DrugScore methods were applied to detect regions favorable
for protein-ligand interactions. Flexible UNITY search were
performed using the pharmacophore model based on the “hot
spots” detected. Of the 5904 compounds selected in the first

step, only 3314 entries satisfied the pharmacophore query.
Following, FlexS was used to superimpose all entries with
two potent hCAII inhibitors and compute the similarity score
with respect to these reference molecules. FlexS computed a
superposition for 2237 of the previously selected 3314
compounds. In the final step, the 100 best-ranked hits from
the FlexS filtering were docked into the binding pocket using
FlexX. The final docked binding modes in hCAII were
ranked for their expected binding affinity either by the
statistically-fit scoring function implemented in FlexX or by
DrugScore. Visual inspection of the suggested binding
modes of FlexX, together with the scoring values of FlexX,
FlexS, and DrugScore, was used to select a small set of
compounds for ordering and subsequent biological testing.
Finally, 13 compounds were selected for biological assays.

Fig. (7). Strategies for structure-based virtual screening.
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Of these 13 compounds, 3 compounds have the inhibitory
activities at the level of subnanomolar, one is nanomolar, and
while a further seven are micromolar inhibitors. The novelty
of the discovered leads is best supported by the fact that a
search in the patent literature showed the newly discovered
subnanomolar compounds to comprise scaffolds not yet
covered by existing patents.

Fig. (8). The consecutive hierarchical screening protocols used in
the design of inhibitors against human carbonic anhydrase.

Ultimately, virtual screening is knowledge-based and we
should apply different strategy for different problem in hand.
It is recommended to use different combinations of virtual
screening techniques and consider the subset of the database
that satisfied the defined criteria. Certainly, the usage of
whether virtual screening techniques should be consistent
with the available program and computational resources that
can be used by researchers.

7. CONCLUSIONS AND OUTLOOK

This review gives a brief summary of recent development
of techniques used in virtual screening, especially docking-
based virtual screening, scoring functions and ADME-based
virtual screening. Furthermore, successful examples of VS
are provided, demonstrating that VS has become an essential
part of tool to find new lead compounds for the
pharmaceutical industry. The main issues still impeding the
progress in this field include the quality of the scoring
functions and ADME/Tox employed. In molecular docking
or de novo design approach, scoring function is the central
problem. At present, all docking programs and scoring
functions have a tendency to generate a significant number
of false positives. Although, this problem has been partially
solved by using several scoring functions in parallel efforts
to improve the quality of the scoring functions should be
needed to progress this technology further. Current models

used to predict ADME/Tox are also very limited by low
predictability. Further developments of virtual ADME/Tox
are valuable for making this a reality and transforming more
virtual molecules into real drugs.
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